Zn(2+) is an essential micronutrient for the growth and development of multicellular organisms, as Zn(2+) deficiencies lead to growth retardation and congenital malformations (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79-118). At the cellular level Zn(2+) depravation results in proliferation defects in many cell types (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79-118), however the molecular pathways involved remain poorly defined. Here we show that the transition metal chelator TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl) ethylene diamine) blocks the G2/M transition of the meiotic cell cycle by inhibiting Cdc25C-cdk1 activation. ICP-MS analyses reveal that Cdc25C is a Zn(2+)-binding metalloprotein, and that TPEN effectively strips Zn(2+) away from the enzyme. Interestingly, although apo-Cdc25C (Zn(2+)-deficient) remains fully catalytically active, it is compromised in its ability to dephosphorylate and activate MPF/cdk1. Thus, Zn(2+) is an important regulator of Cdc25C function in vivo. Because of the conserved essential role of the Cdc25C-cdk1 module in the eukaryotic cell cycle, these studies provide fundamental insights into cell cycle regulation.
[1] The naturally occurring radionuclide, 210 Pb, and its decay daughter, 210 Po, were measured in the Keweenaw Peninsula region of Lake Superior. Water, suspended particles, sediment trap material (settling particles), and sediment cores and grab samples were collected along three transects that stretched from 1 to 20 km from shore. Departures from secular equilibrium (activity ratio of 210 Po: 210 Pb = 1) were observed for most samples.
210Po-deficiency was observed in both suspended particles (TSP) with a ratio of 0.43 ± 0.05 (±95% confidence interval (CI)) and settling particles with a ratio of 0.57 ± 0.04; higher ratios in the settling particles resulted from an admixture of resuspended sediments. Ratios in the dissolved phase were 0.45 ± 0.12. Approximately 83% and 85% of total 210 Po and 210 Pb in the water column was in the particulate phase. No evidence of biological uptake of Po was found. Seasonal and spatial variability in activities and ratios was small. Using steady state solutions to the mass balance equations for both isotopes, similar residence times in the water column were calculated for 210 Po and 210 Pb (55 $ 75 days in a 150-m-deep water column). It was possible to calibrate a one-box model for the paired isotopes so that the model output closely matched rates of sediment and isotope resuspension estimated from sediment traps. However, this calibration required a fractionation of the isotopes during resuspension. The particle settling velocity was estimated to be 2.3 m d À1 , which also is in agreement with the estimate (2.4 ± 2.2 m d
À1) from sediment traps. These results indicate rapid fluxes of radioisotopes and sediments through the water column largely driven by resuspension of sediments in nearshore areas.
Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring ( 210 Pb, 210 Po and 7 Be) and man-made ( 137 Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.