Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments.
The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.
Germins and germin-like proteins (GLPs) are glycoproteins closely associated with plant development and stress response in the plant kingdom. Here, we carried out genome-wide identification and expression analysis of the GLP gene family in cucumber to study their possible functions. A total of 38 GLP genes were identified in cucumber, which could be mapped to six out of the seven cucumber chromosomes. A phylogenetic analysis of the GLP members from cucumber, Arabidopsis and rice showed that these GLPs could be divided into six groups, and cucumber GLPs in the same group had highly similar conserved motif distribution and gene structure. Gene duplication analysis revealed that six cucumber GLP genes were located in the segmental duplication regions of cucumber chromosomes, while 14 genes were associated with tandem duplications. Tissue expression profiles of cucumber GLP genes showed that many genes were preferentially expressed in specific tissues. In addition, some cucumber GLP genes were differentially expressed under salt, drought and ABA treatments, as well as under DM inoculation. Our results provide important information for the functional identification of GLP genes in the growth, development and stress response of cucumber.
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains. Most of the CsSAP genes were intronless and harbored a number of stress- and hormone-responsive cis-elements in their promoter regions. Tissue expression analysis showed that the CsSAP genes had a broad spectrum of expression in different tissues, and some of them displayed remarkable alteration in expression during fruit development. RT-qPCR results indicated that all the selected CsSAP genes displayed transcriptional responses to cold, drought, and salt stresses. These results enable the first comprehensive description of the SAP gene family in cucumber and lay a solid foundation for future research on the biological functions of CsSAP genes.
As the group II LEA (late embryogenesis abundant) proteins, dehydrins (DHNs) play an important role in plant growth and development, as well as in response to abiotic or biotic stress challenges. In this study, a DHN gene named CsLEA11 was identified and characterized from Cucumis sativus. Sequence analysis of CsLEA11 showed that it is a Y3SK2-type DHN protein rich in hydrophilic amino acids. Expression analyses revealed that the transcription of CsLEA11 could be significantly induced by heat and cold stress. The recombinant plasmid was transformed into Escherichia coli BL21 and isopropy-β-d-thiogalactoside (IPTG) was used to induce recombinant E. coli to express CsLEA11 gene. Overexpression of CsLEA11 in E. coli enhanced cell viability and conferred tolerance to heat and cold stress. Furthermore, CsLEA11 protein could protect the activity of lactate dehydrogenase (LDH) under heat stress. Taken together, our data demonstrate that CsLEA11 might function in tolerance of cucumber to heat and cold stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-017-0483-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.