Wind turbines' participation in frequency response is known to improve the frequency stability of power systems, but it can also have a negative impact on the fatigue load of wind turbines. The objective of this paper is to investigate the effect of frequency response on the fatigue loads experienced by various components of a wind turbine, including the low-speed shaft, tower, and blade. To achieve this goal, the authors develop a model of a variable speed horizontal-axis wind turbine based on a doubly fed induction generator. They derive explicit analytical equations of low-speed shaft torque, tower bending moment, and blade bending moment to describe the fluctuations of torque and moment related to the operating states of wind turbines, such as generator torque, rotor speed, and pitch angle, under frequency response. These equations allow for the evaluation of the impact of frequency response on torque and moment changes and fatigue load. Spectral density analysis and modal analysis are used to further analyze the analytical equations, examining the influence of frequency response on different operating conditions of wind turbines and determining the mechanism by which frequency response affects fatigue load qualitatively and quantitatively. The authors use the FAST V8 Code based on the NREL offshore 5-MW baseline wind turbine to demonstrate the effectiveness of the proposed analysis method in evaluating fatigue loads affected by frequency response. The results show that the fatigue load on the low-speed shaft and the lateral side of the tower will significantly increase due to wind turbine participation in frequency response.
This study primarily analyzes the frequency regulation capability and fatigue loads of wind turbines based on over-speed control. Initially, a small-signal model of the wind turbine is established, which describes the output characteristics of the wind turbine under different control modes and wind speeds. Next, the model is used to analyze the wind turbine’s frequency regulation capability and to calculate the optimal frequency regulation parameter range based on the phase margin. Finally, a combination of frequency domain and time domain analysis is used to examine the influence of over-speed control on the fatigue loads of low-speed shafts, towers, and blades, which determines the wind speed range suitable for frequency regulation. The Fast (Fatigue, Aerodynamics, Structures, and Turbulence) Code V8 is used to simulate the dynamic characteristics of the wind turbine.
The operational range of a wind turbine is typically divided into two regions based on wind speed: below and above the rated wind speed. The turbine switches between these two regions depending on the prevailing wind speed; however, during the transition, the generator may undergo transient shocks in torque, which can negatively impact both the mechanical load of the turbine and the reliability of the power system. This article presents a flexible torque control method for wind turbines, specifically designed to handle the transition between wind speed regions when the turbine is participating in frequency regulation. First, the anomalies in generator torque caused by traditional torque control methods during frequency response scenarios are analyzed. Next, two methods—dynamic deloading and flexible torque control—are developed to address these issues. The developed methods set transition regions based on generator speed, which helps to reduce the impact of transient changes in generator torque. Importantly, the addition of transition regions does not require additional feedback, making the controller easy to implement. The response characteristics of the proposed methods are then analyzed under different deloading factors and wind speeds using model linearization. Simulation studies are presented to verify the effectiveness of the proposed methods. Overall, this study demonstrates the potential value of flexible torque control methods for wind turbines, which can help to mitigate the negative impact of torque shocks and improve the reliability and efficiency of wind power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.