The thickness-dependent epitaxial strains and phase transformations of (001)-VO2/TiO2 thin films are investigated systematically in a wide thickness range (from 9 to 150 nm). Under a thickness of 18 nm, the tensile in-plane strain is maintained, owing to the good lattice and the symmetry matching between the VO2 thin film and the TiO2 substrate, but the compressive out-of-plane epitaxial strain is gradually relaxed. The epitaxial strains co-stabilize the rutile phase (R phase) in this thickness range. Beyond a thickness of 18 nm, the out-of-plane lattice c exhibits a sudden elongation and reaches the bulk level of 2.8528 Å at a thickness of 20 nm, which indicates a structural phase transition (SPT). A further increase of the film thickness results in another new phase (tetragonal-like or T-like) with lattice distortion, which maintains the tetragonal symmetry in the thickness range of 20 to 55 nm. From a thickness of 60 nm, the monoclinic phase (M1 phase) appears, which indicates another SPT from T-like to the monoclinic M1 phase. This SPT is more favorable energetically, owing to the assistance of the strain relaxation in the thicker films. Additionally, the metal-insulator transition temperature positively increases as a function of the out-of-plane strain. This result is consistent with the fact that the tensile strain along the cR axis (V-V atom chain) is conducive for the stabilized insulating phase. This work highlights strain engineering as a crucial avenue for manipulating the phase transformations and properties in the correlated electron system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.