Summary
How do the emotions of others affect us? The human anterior cingulate cortex (ACC) responds while experiencing pain in the self and witnessing pain in others, but the underlying cellular mechanisms remain poorly understood. Here we show the rat ACC (area 24) contains neurons responding when a rat experiences pain as triggered by a laser and while witnessing another rat receive footshocks. Most of these neurons do not respond to a fear-conditioned sound (CS). Deactivating this region reduces freezing while witnessing footshocks to others but not while hearing the CS. A decoder trained on spike counts while witnessing footshocks to another rat can decode stimulus intensity both while witnessing pain in another and while experiencing the pain first-hand. Mirror-like neurons thus exist in the ACC that encode the pain of others in a code shared with first-hand pain experience. A smaller population of neurons responded to witnessing footshocks to others and while hearing the CS but not while experiencing laser-triggered pain. These differential responses suggest that the ACC may contain channels that map the distress of another animal onto a mosaic of pain- and fear-sensitive channels in the observer. More experiments are necessary to determine whether painfulness and fearfulness in particular or differences in arousal or salience are responsible for these differential responses.
Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer “catches” the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator’s distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.