The demand for high performance lithium-ion batteries (LIBs) is increasing due to widespread use of portable devices and electric vehicles. Silicon (Si) is one of the most attractive candidate anode materials for next generation LIBs. However, the high-volume change (>300%) during lithium ion alloying/de-alloying leads to poor cycle life. When Si is used as the anode, conductive carbon is needed to provide the necessary conductivity. However, the traditional carbon coating method could not overcome the challenges of pulverization and unstable Solid Electrolyte Interphase (SEI) layer during long-term cycling. Since 2010, Si/Graphene composites have been vigorously studied in hopes of providing a material with better cycling performance. This paper reviews current progress of Si/Graphene nanocomposites in LIBs. Different fabrication methods have been studied to synthesize Si/Graphene nanocomposites with promising electrochemical performances. Graphene plays a key enabling role in Si/Graphene anodes. However, the desired properties of graphene for this application have not been systematically studied and understood. Further systematic investigation of the desired graphene properties is suggested to better control the Si/Graphene anode performance.
Spent lead paste is the main component in lead-acid batteries reaching end of life. It contains about 55% lead sulphate and 35% lead dioxide, as well as minor amounts of lead oxide. It is necessary to recycle spent lead paste with minimal pollution and low energy consumption instead of the conventional smelting method. In this study, a novel approach involving hydrometallurgical desulphurisation and thermal degradation is developed to recover lead as PbO products from spent lead acid batteries. First, the desulphurisation effects and phase compositions of products with different transforming agents were compared, and the optimum conditions using (NH4)2CO3 as a transforming agent were determined. And then, the thermal degradation processes of both precursors lead carbonate and lead dioxide were investigated to prepare α-PbO, Pb3O4, and β-PbO products in argon and air atmospheres, respectively. Both the desulphurisation precursors and the calcination products were characterised by thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The results showed that the lead oxide products were prepared, including α-PbO at 450°C in argon, Pb3O4 and β-PbO at 480°C and 620°C in air, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.