A series of novel ultra low dielectric constant soluble organic-inorganic nanocomposites in which nanoscale octa-aminophenyl polyhedral oligomeric silsesquioxanes (octaAmino POSS-Ph8) were covalently linked onto the fluoropoly(ether ether ketone)s (PEEK-CF 3 -COOH) were prepared and characterized. The chemical structures of the polymer matrix and nanocomposites were confirmed by 1 H NMR and FT-IR spectra. The analysis of wide-angle X-ray diffraction (WAXD) and X-ray photoelectron spectra (XPS) indicated that the POSS clusters were successfully incorporated into the polymer matrix and the homogeneous dispersion of POSS cages in the polymer matrix was evidenced by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) (Si-mapping). Furthermore, the influence of the incorporation of POSS particles on the properties of nanocomposites is investigated.The dielectric constants of the organic-inorganic nanocomposites were drastically reduced relative to neat PEEK-CF 3 -COOH films and the dielectric constant could achieve as low as 1.71 (1 MHz). Besides, the thermal and mechanical properties of the nanocomposites were significantly improved by incorporation of octaAmino POSS-Ph8 moieties. Meanwhile, the nanocomposite thin films still retained the good transparency.
A novel semi-aromatic polyamide with bis(diphenylamino)-fluorene moieties was designed and synthesized, which exhibited highly stable electrochromic/electrofluorescent dual-switching properties.
Porphyrin-graphene composites have attracted increasing attention due to a number of intriguing functions, and their photoelectrical and catalytic performances are expected to be modulated through different approaches. In the present study, a designed polymer based on phenyl sulfone, (p-amino)phenylhydroquinone, and a symmetrical dinaphthylporphyrin were covalently attached to a graphene oxide (GO) sheet. The formation of the nanohybrid was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman, ultraviolet-visible (UV-vis) absorption, steady and transient fluorescence spectroscopy techniques. The nonlinear optical and optical limiting performances of the hybrid were investigated using Z-scan measurements at 532 nm and 1064 nm. For comparison, a porphyrin functionalized GO hybrid was synthesized as a reference. At the same linear transmittance, the polymer functionalized GO exhibited a stronger optical limiting response and a larger nonlinear extinction coefficient than the individual GO, porphyrinated polymer, and porphyrin functionalized GO hybrid analogue, and its intrinsic photophysical mechanism was discussed in detail. More importantly, further improvement of its nonlinear optical properties can be achieved by the chemical reduction of the hybrid. The enhanced nonlinear optical performance originated from the effective combination of nonlinear scattering, reverse saturable absorption, and a possible photo-induced electron/energy transfer mechanism from donor porphyrin moieties in the polymer backbone to acceptor graphene. Our result might provide a new avenue for the development of graphene-porphyrin materials in the field of photocatalysis, nonlinear optics, and optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.