In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.
Reconfigurable intelligent surface (RIS) has emerged as a promising technology for achieving high spectrum and energy efficiency in future wireless communication networks. In this paper, we investigate an RIS-aided single-cell multi-user mobile edge computing (MEC) system where an RIS is deployed to support the communication between a base station (BS) equipped with MEC servers and multiple single-antenna users. To utilize the scarce frequency resource efficiently, we assume that users communicate with BS based on a non-orthogonal multiple access (NOMA) protocol. Each user has a computation task which can be computed locally or partially/fully offloaded to the BS. We aim to minimize the sum energy consumption of all users by jointly optimizing the passive phase shifters, the size of transmission data, transmission rate, power control, transmission time and the decoding order. Since the resulting problem is non-convex, we use the block coordinate descent method to alternately optimize two separated subproblems. More specifically, we use the dual method to tackle a subproblem with given phase shift and obtain the closed-form solution; and then we utilize penalty method to solve another subproblem for given power control. Moreover, in order to demonstrate the effectiveness of our proposed algorithm, we propose three benchmark schemes: the time-division multiple access (TDMA)-MEC scheme, the full local computing scheme and the full offloading scheme. We use an alternating 1-D search method and the dual method that can solve the TDMA-based transmission problem well. Numerical results demonstrate that the proposed scheme can increase the energy efficiency and achieve significant performance gains over the three benchmark schemes.
In this paper, we investigate the energy minimization problem of an unmanned-aerial-vehicle (UAV)-assisted data collection sensor network. We jointly optimize the trajectory of the UAV and the power consumption of the sensors for data uploading with the power and energy constraints of sensors. The trajectory design consists of two parts: the serving orders for sensors and the UAV's hovering positions, where the latter is highly coupled with the power consumption of the sensors. To find the optimal serving orders of sensors, we formulate the problem as a standard traveling salesman problem (TSP), which can be optimally solved by the efficient Cutting-Plane method. To solve the UAV position and sensor uploading power optimization problem, we propose the PSPSCA algorithm that optimizes the transmit power by the pattern search method, while the UAV's hovering positions are optimized by the successive-convexapproximation (SCA) method in the inner loop. To deal with the high computational complexity of the PSPSCA algorithm, we analyze the analytical relationship between optimal sensor uploading power and the UAV's hovering positions, based on which we simplify the optimization problem and propose the AQSCA algorithm as an alternative approach. Simulation results have validated that the proposed algorithm outperforms the existing benchmark schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.