In this work, we design a novel polarization converter based on a metasurface with double w-shaped unit cells. The proposed polarization converter can convert linearly polarized incident waves into its cross polarized reflective counterparts in a very wide band with high efficiency. Theoretical analysis and simulation results show that the proposed polarization converter can achieve a 90° polarization rotation, while the polarization conversion ratio (PCR) is above 90% in the frequency range from 8.44 GHz to 24.96 GHz, and the relative bandwidth can be up to 99%. The measured results agree well with simulation results. The designed double w-shaped metasurface has a very simple geometry, and can realize a highly-efficient and broadband polarization rotation. Therefore, it has practical applications in wireless communication systems, imaging, radar stealth technology, and other fields.
In this paper, we propose an ultra-broadband metamaterial absorber based on the connected cylindrical holes (CCHs). The designed structure can achieve more than 90% absorptivity under normal incidence, ranging from ultraviolet to near-infrared (i.e. from 300 nm to 1260 nm), and the peak absorption is up to 99.73%. The excitation of surface plasmon resonance combined with air-slots modes leads to this broadband absorption. For both the TE and TM polarizations, the polarization insensitivity and angle insensitivity are discussed. In order to clearly figure out the physical absorption mechanism, the distribution of electric and magnetic fields is analyzed. In addition, we also demonstrate that the nanostructures absorption performance can be turned by structural parameters. This ultra-broadband metamaterial absorber has application prospects in solar cells, infrared detection and conversion of photovolatics.
Bloch-Bloembergen-Slonczewski equation is adopted to simulate magnetization dynamics in spin-valve based spin-transfer torque oscillator with synthetic antiferromagnet acting as a free magnetic layer. High frequency up to the terahertz scale is predicted in synthetic antiferromagnet spin-transfer torque oscillator with no external magnetic field if the following requirements are fulfilled: antiferromagnetic coupling between synthetic antiferromagnetic layers is sufficiently strong, and the thickness of top (bottom) layer of synthetic antiferromagnet is sufficiently thick (thin) to achieve a wide current density window for the high oscillation frequency. Additionally, the transverse relaxation time of the free magnetic layer should be sufficiently larger compared with the longitudinal relaxation time. Otherwise, stable oscillation cannot be sustained or scenarios similar to regular spin valve-based spin-transfer torque oscillator with relatively low frequency will occur. Our calculations pave a new way for exploring THz spintronics devices.
Diabetic nephropathy (DN) is one of the main causes of chronic renal failure, which is also the final cause of mortality in ~30% of diabetic patients. 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) from Galla rhois has anti-inflammation, anti-oxidation and angiogenesis effects. The present study aimed to explore the protective effects on diabetic nephropathy rats by alleviating inflammation and oxidative stress and the underlying mechanism. High-fat diet/STZ induced rats and high glucose (HG) induced podocytes (MPC5) were used to simulate the DN in vivo and in vitro. The blood glucose level was measured using a blood glucose meter and renal function was determined by an automatic biochemical analyzer. The pathological changes and renal fibrosis were observed through hematoxylin and eosin, periodic acid-Schiff and Masson staining. The expression of nephrin in tissues, fibrosis-related proteins in tissues, MAPK/NF-κB and ERK/nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway related proteins in tissues and apoptosis related proteins in tissues and podocytes was detected by western blotting. The inflammatory response and oxidative stress in tissues and podocytes were determined by respective commercial kits and apoptosis in tissues and podocytes was detected by TUNEL assay. The viability of podocytes treated with PGG with or without HG was analyzed by CCK-8 assay. As a result, the blood glucose level, urinary albumin/creatinine ratio, blood urea nitrogen and serum creatinine in blood were all increased and nephrin expression was decreased. The pathological changes and renal fibrosis were aggravated and the inflammation, oxidative stress and apoptosis in renal tissues were enhanced. The above effects were reversed by PGG treatment dose-dependently. MAPK/NF-κB and ERK/Nrf2/HO-1 signaling pathways were activated in DN rats and were suppressed by PGG treatment. The reduced viability and increased apoptosis, inflammation and oxidative stress in MPC5 cells were shown in HG induction, which was reversed by PGG treatment. However, P79350 (p38 agonist) and LM22B-10 (ERK1/2 agonist) weakened the effect of PGG. In conclusion, PGG protects against DN kidney injury by alleviating inflammation and oxidative stress by suppressing the MAPK/NF-κB and ERK/Nrf2/HO-1 signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.