Visual tracking algorithms based on structured output support vector machine (SOSVM) have demonstrated excellent performance. However, sampling methods and optimization strategies of SOSVM undesirably increase the computational overloads, which hinder real-time application of these algorithms. Moreover, due to the lack of highdimensional features and dense training samples, SOSVM-based algorithms are unstable to deal with various challenging scenarios, such as occlusions and scale variations. Recently, visual tracking algorithms based on discriminative correlation filters (DCF), especially the combination of DCF and features from deep convolutional neural networks (CNN), have been successfully applied to visual tracking, and attains surprisingly good performance on recent benchmarks. The success is mainly attributed to two aspects: the circular correlation properties of DCF and the powerful representation capabilities of CNN features. Nevertheless, compared with SOSVM, DCF-based algorithms are restricted to simple ridge regression which has a weaker discriminative ability. In this paper, a novel circular and structural operator tracker (CSOT) is proposed for high performance visual tracking, it not only possesses the powerful discriminative capability of SOSVM but also efficiently inherits the superior computational efficiency of DCF. Based on the proposed circular and structural operators, a set of primal confidence score maps can be obtained by circular correlating feature maps with their corresponding structural correlation filters. Furthermore, an implicit interpolation is applied to convert the multi-resolution feature maps to the continuous domain and make all primal confidence score maps have the same spatial resolution. Then, we exploit an efficient ensemble post-processor based on relative entropy, which can coalesce primal confidence score maps and create an optimal confidence score map for more accurate localization. The target is localized on the peak of the optimal confidence score map. Besides, we introduce a collaborative optimization strategy to update circular and structural operators by iteratively training structural correlation filters, which significantly reduces computational complexity and improves robustness. Experimental results demonstrate that our approach achieves state-of-the-art performance in mean AUC scores of 71.5% and 69.4% on the OTB2013 and OTB2015 benchmarks respectively, and obtains a third-best expected average overlap (EAO) score of 29.8% on the VOT2017 benchmark.Recently, discriminative correlation filters (DCF) based trackers [17,18,19,20,21] have achieved excellent results in terms of accuracy, robustness and speed [15,22,23], because they treat tracking tasks as similarity learning problems. Since DCF exploits all circular shifts of training samples to solve a ridge regression in the Fourier frequency domain [9], it avoids time-consuming correlation operations. Recent advancements in DCF-based tracking performance are driven by multi-dimensional features [9,18], adaptiv...
Compared with visible object tracking, thermal infrared (TIR) object tracking can track an arbitrary target in total darkness since it cannot be influenced by illumination variations. However, there are many unwanted attributes that constrain the potentials of TIR tracking, such as the absence of visual color patterns and low resolutions. Recently, structured output support vector machine (SOSVM) and discriminative correlation filter (DCF) have been successfully applied to visible object tracking, respectively. Motivated by these, in this paper, we propose a large margin structured convolution operator (LM-SCO) to achieve efficient TIR object tracking. To improve the tracking performance, we employ the spatial regularization and implicit interpolation to obtain continuous deep feature maps, including deep appearance features and deep motion features, of the TIR targets. Finally, a collaborative optimization strategy is exploited to significantly update the operators. Our approach not only inherits the advantage of the strong discriminative capability of SOSVM but also achieves accurate and robust tracking with higher-dimensional features and more dense samples. To the best of our knowledge, we are the first to incorporate the advantages of DCF and SOSVM for TIR object tracking. Comprehensive evaluations on two thermal infrared tracking benchmarks, i.e. VOT-TIR2015 and VOT-TIR2016, clearly demonstrate that our LMSCO tracker achieves impressive results and outperforms most state-of-the-art trackers in terms of accuracy and robustness with sufficient frame rate.
Discriminative Correlation Filters (DCF)-based tracking algorithms exploiting conventional handcrafted features have achieved impressive results both in terms of accuracy and robustness. Template handcrafted features have shown excellent performance, but they perform poorly when the appearance of target changes rapidly such as fast motions and fast deformations. In contrast, statistical handcrafted features are insensitive to fast states changes, but they yield inferior performance in the scenarios of illumination variations and background clutters. In this work, to achieve an efficient tracking performance, we propose a novel visual tracking algorithm, named MFCMT, based on a complementary ensemble model with multiple features, including Histogram of Oriented Gradients (HOGs), Color Names (CNs) and Color Histograms (CHs). Additionally, to improve tracking results and prevent targets drift, we introduce an effective fusion method by exploiting relative entropy to coalesce all basic response maps and get an optimal response. Furthermore, we suggest a simple but efficient update strategy to boost tracking performance. Comprehensive evaluations are conducted on two tracking benchmarks demonstrate and the experimental results demonstrate that our method is competitive with numerous stateof-the-art trackers. Our tracker achieves impressive performance with faster speed on these benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.