The bulb formation of Lilium is affected by many physiological and biochemical phenomena, including flower bud differentiation, starch and sucrose accumulation, photoperiod, carbon fixation, plant hormone transduction, etc. The transcriptome analysis of flower buds of Lilium hybrid ‘Siberia’ at different maturity stages showed that floral bud formation is associated with the accumulation of anthocyanins. The results of HPLC-MS showed that cyanidin is the major anthocyanin found in Lilium ‘Siberia’. Transcriptome KEGG enrichment analysis and qRT-PCR validation showed that two genes related to flavonoid biosynthesis (LhANS-rr1 and LhDFR) were significantly up-regulated. The functional analysis of differential genes revealed that LhMYB114 was directly related to anthocyanin accumulation among 19 MYB transcription factors. Furthermore, the qRT-PCR results suggested that their expression patterns were very similar at different developmental stages of the lily bulbs. Virus-induced gene silencing (VIGS) revealed that down-regulation of LhANS-rr1, LhDFR, and LhMYB114 could directly lead to a decrease in anthocyanin accumulation, turning the purple phenotype into a white color. Moreover, this is the first report to reveal that LhMYB114 can regulate anthocyanin accumulation at the mature stage of lily bulbs. The accumulation of anthocyanins is an important sign of lily maturity. Therefore, these findings have laid a solid theoretical foundation for further discussion on lily bulb development in the future.
Background Non‐small cell lung cancer (NSCLC) is one of the cancers with a high mortality rate. CircRNAs have emerged as an important regulatory factor in tumorigenesis in recent years. However, the detailed regulatory mechanism of a circular RNA cullin 2 (hsa_circ_0018189; hsa_circ_0018189) is still unclear in NSCLC. Methods RNA levels of hsa_circ_0018189, microRNA (miR)‐656–3p, and Solute carrier family seven member 11 (SLC7A11, xCT) were analyzed by real‐time quantitative reverse transcription‐polymerase chain reaction (RT‐qPCR), and protein level was assessed by Western blot and immunohistochemical assay. Enzyme‐linked immunosorbent assay was conducted to detect cell glutamine metabolism. Effects of hsa_circ_0018189 on cell proliferation, apoptosis, migration, and invasion were analyzed by corresponding assays. Luciferase reporter assay and RNA‐immunoprecipitation assay confirmed the target relationship between miR‐656‐3p and hsa_circ_0018189 or xCT. The in vivo function of hsa_circ_0018189 was verified by xenograft mouse models. Results Hsa_circ_0018189 abundance was overexpressed in NSCLC cells and samples. Deficiency of hsa_circ_0018189 lowered NSCLC cell proliferative, migrating, invading, and glutamine metabolism capacities, and hsa_circ_0018189 silencing inhibited the growth of tumors in vivo. Hsa_circ_0018189 could up‐regulate xCT by sponging miR‐656‐3p. And miR‐656‐3p downregulation or xCT overexpression partly overturned hsa_circ_0018189 knockdown or miR‐656‐3p mimic‐mediated repression of NSCLC cell malignancy. Conclusion Hsa_circ_0018189 drove NSCLC growth by interacting with miR‐656‐3p and upregulating xCT.
In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.