Two frameworks based on Model Predictive Control (MPC) for obstacle avoidance with autonomous vehicles are presented. A given trajectory represents the driver intent. An MPC has to safely avoid obstacles on the road while trying to track the desired trajectory by controlling front steering angle and differential braking. We present two different approaches to this problem. The first approach solves a single nonlinear MPC problem. The second approach uses a hierarchical scheme. At the high-level, a trajectory is computed on-line, in a receding horizon fashion, based on a simplified point-mass vehicle model in order to avoid an obstacle. At the low-level an MPC controller computes the vehicle inputs in order to best follow the high level trajectory based on a nonlinear vehicle model. This article presents the design and comparison of both approaches, the method for implementing them, and successful experimental results on icy roads.
This paper presents a hierarchical control framework for the obstacle avoidance of autonomous and semiautonomous ground vehicles. The high-level planner is based on motion primitives created from a four-wheel nonlinear dynamic model. Parameterized clothoids and drifting maneuvers are used to improve vehicle agility. The low-level tracks the planned trajectory with a nonlinear Model Predictive Controller. The first part of the paper describes the proposed control architecture and methodology. The second part presents simulative and experimental results with an autonomous and semi-autonomous ground vehicle traveling at high speed on an icy surface.
This paper presents the design of a controller for an autonomous ground vehicle. The goal is to track the lane centerline while avoiding collisions with obstacles. A nonlinear model predictive control (MPC) framework is used where the control inputs are the front steering angle and the braking torques at the four wheels. The focus of this work is on the development of a tailored algorithm for solving the nonlinear MPC problem. Hardware-in-the-loop simulations with the proposed algorithm show a reduction in the computational time as compared to general purpose nonlinear solvers. Experimental tests on a passenger vehicle at high speeds on low friction road surfaces show the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.