Lutein and zeaxanthin are thought to decrease the incidence of age-related macular degeneration (AMD); however, findings have been inconsistent. We conducted a systematic literature review and meta-analysis to evaluate the relationship between dietary intake of lutein and zeaxanthin and AMD risk. Relevant studies were identified by searching five databases up to April 2010. Reference lists of articles were retrieved, and experts were contacted. Literature search, data extraction and study quality assessment were performed independently by two reviewers and results were pooled quantitatively using meta-analysis methods. The potential sources of heterogeneity and publication bias were also estimated. The search yielded six longitudinal cohort studies. The pooled relative risk (RR) for early AMD, comparing the highest with the lowest category of lutein and zeaxanthin intake, was 0·96 (95 % CI 0·78, 1·17). Dietary intake of these carotenoids was significantly related with a reduction in risk of late AMD (RR 0·74; 95 % CI 0·57, 0·97); and a statistically significant inverse association was observed between lutein and zeaxanthin intake and neovascular AMD risk (RR 0·68; 95 % CI 0·51, 0·92). The results were essentially consistent among subgroups stratified by participant characteristics. The findings of the present meta-analysis indicate that dietary lutein and zeaxanthin is not significantly associated with a reduced risk of early AMD, whereas an increase in the intake of these carotenoids may be protective against late AMD. However, additional studies are needed to confirm these relationships.Key words: Lutein: Zeaxanthin: Age-related macular degeneration: Meta-analysis Age-related macular degeneration (AMD), the leading cause of legal blindness in people aged over 65 years in industrialised countries, is a progressive disorder primarily affecting the macula, the central region of the retina involved with central vision (1) . Early AMD is characterised clinically by yellowish deposits known as soft drusen accumulations and pigmentary abnormalities in the retinal pigment epithelium (RPE) and Bruch's membrane, whereas late-stage manifestations encompass atrophy of photoreceptors and the RPE underlying it, choroidal neovascularisation, subretinal haemorrhage, detachment of RPE and retinal scarring (2) . Currently, it has been reported that more than ten million people in the USA and approximately fifty million worldwide suffer from AMD (3) . In the UK, almost 200 000 people aged 75 years or older were visually impaired due to AMD (4) .Owing to the sharp rise in the elderly population, the disease has brought a huge burden for the health care system and had a profound impact on the quality of life and independence of older individuals. It is estimated that by the year 2020 the number of patients with late AMD will be increased by more than 50 % to almost three million in the USA alone (5) .
ObjectiveTo estimate the risks of daily hospital admissions for cause specific major cardiovascular diseases associated with short term exposure to ambient fine particulate matter (aerodynamic diameter ≤2.5 μm; PM2.5) pollution in China.DesignNational time series study.Setting184 major cities in China.Population8 834 533 hospital admissions for cardiovascular causes in 184 Chinese cities recorded by the national database of Urban Employee Basic Medical Insurance from 1 January 2014 to 31 December 2017.Main outcome measuresDaily counts of city specific hospital admissions for primary diagnoses of ischaemic heart disease, heart failure, heart rhythm disturbances, ischaemic stroke, and haemorrhagic stroke among different demographic groups were used to estimate the associations between PM2.5 and morbidity. An overdispersed generalised additive model was used to estimate city specific associations between PM2.5 and cardiovascular admissions, and random effects meta-analysis used to combine the city specific estimates.ResultsOver the study period, a mean of 47 hospital admissions per day (standard deviation 74) occurred for cardiovascular disease, 26 (53) for ischaemic heart disease, one (five) for heart failure, two (four) for heart rhythm disturbances, 14 (28) for ischaemic stroke, and two (four) for haemorrhagic stroke. At the national average level, an increase of 10 μg/m3 in PM2.5 was associated with a 0.26% (95% confidence interval 0.17% to 0.35%) increase in hospital admissions on the same day for cardiovascular disease, 0.31% (0.22% to 0.40%) for ischaemic heart disease, 0.27% (0.04% to 0.51%) for heart failure, 0.29% (0.12% to 0.46%) for heart rhythm disturbances, and 0.29% (0.18% to 0.40%) for ischaemic stroke, but not with haemorrhagic stroke (−0.02% (−0.23% to 0.19%)). The national average association of PM2.5 with cardiovascular disease was slightly non-linear, with a sharp slope at PM2.5 levels below 50 μg/m3, a moderate slope at 50-250 μg/m3, and a plateau at concentrations higher than 250 μg/m3. Compared with days with PM2.5 up to 15 μg/m3, days with PM2.5 of 15-25, 25-35, 35-75, and 75 μg/m3 or more were significantly associated with increases in cardiovascular admissions of 1.1% (0 to 2.2%), 1.9% (0.6% to 3.2%), 2.6% (1.3% to 3.9%), and 3.8% (2.1% to 5.5%), respectively.According to projections, achieving the Chinese grade 2 (35 μg/m3), Chinese grade 1 (15 μg/m3), and World Health Organization (10 μg/m3) regulatory limits for annual mean PM2.5 concentrations would reduce the annual number of admissions for cardiovascular disease in China. Assuming causality, which should be done with caution, this reduction would translate into an estimated 36 448 (95% confidence interval 24 441 to 48 471), 85 270 (57 129 to 113 494), and 97 516 (65 320 to 129 820), respectively.ConclusionsThese data suggest that in China, short term exposure to PM2.5 is associated with increased hospital admissions for all major cardiovascular diseases except for haemorrhagic stroke, even for exposure levels not exceeding the current regulatory limits.
Background: The coronavirus disease 19 (COVID-19) pandemic has become a global threat. Few studies have explored the risk factors for the recovery time of patients with COVID-19. This study aimed to explore risk factors associated with long-term hospitalization in patients with COVID-19.Methods: In this retrospective study, patients with laboratory-confirmed COVID-19 hospitalized in a hospital in Wuhan by March 30, 2020, were included. Demographic, clinical, laboratory, and radiological data from COVID-19 patients on hospital admission were extracted and were compared between the two groups, defined as short-and long-term hospitalization, respectively according to the median hospitalization time. Univariable and multivariable logistic regression methods were performed to identify risk factors associated with long-term hospitalization in patients with COVID-19.Results: A total of 125 discharged patients with COVID-19 were reviewed, including 123 general patients and two severe patients. The median hospitalization time was 13.0 days (IQR 10.0-17.0). Among them, 66 patients were discharged <14 days (short-term group) and 59 patients were discharged ≥14 days (long-term group). Compared with the short-term group, patients in the long-term group had significantly higher levels of C-reactive protein (P = 0.000), troponin I (P = 0.002), myoglobin (P = 0.037), aspartate aminotransferase (P = 0.005), lactic dehydrogenase (P = 0.000), prothrombin time (P = 0.030), fibrinogen (P = 0.000), and D-dimer (P = 0.006), but had significantly lower levels of lymphocyte count (P = 0.001), platelet count (P = 0.017), albumin (P = 0.001), and calcium (P = 0.000). Additionally, the incidences of hypocalcemia (P = 0.001), hyponatremia (P = 0.021), hypochloremia (P = 0.019), and bilateral pneumonia (P = 0.000) in the long-term group were significantly higher than those in the short-term group. Multivariable regression showed that hypocalcemia (P = 0.007, OR 3.313, 95% CI 1.392-7.886), hypochloremia (P = 0.029, OR 2.663, 95% CI 1.104-6.621), and bilateral pneumonia (P = 0.009, OR 5.907, 95% CI 1.073-32.521) were independent risk factors associated with long-term hospitalization in patients with COVID-19. Furthermore, a ROC curve where the area under the ROC was 0.766 for retained variables is presented.Wu et al. Risk Factors for Recovery Time of COVID-19Conclusions: Hypocalcemia, hypochloremia, and bilateral pneumonia on hospital admission were independent risk factors associated with long-term hospitalization in patients with COVID-19. To the best of our knowledge, this is the first study to highlight the importance of electrolyte imbalance in predicting the hospitalization time of patients with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.