The relative permeability is a critical property to predict field performance by reservoir numerical simulation. However, determining the relative permeability curve by experiments is time consuming and difficult for tight oil reservoirs due to the extremely low permeability. Therefore, many studies focus on the analytical solution to determine the relative permeability curve. However, no exiting solutions take the effect of boundary layer, Jamin and wettability into account. This results in overestimated results because boundary layer is even up to 60 % of the throat and throat to pore ratio reaches up to 400 in tight oil reservoirs. Therefore, an improved analytical solution is desirable to solve these two problems. In this paper, based on the collected experimental results, the Purcell's solution is modified and an improved solution considering the effect of boundary layer, Jamin and wettability is developed. Compared to the results of the relative permeability experiments, the improved solution is more accurate and reliable. Because the throat distribution of the tight oil reservoir in Daqing Field is narrower than that in Changqing Field, the productivity of the tight oil reservoir in Daqing Field is less than that in Changqing Field at first. However, the breakthrough time of the tight oil reservoir in Daqing Field is longer than that in Changqing Field. This improved solution can only be applied to tight oil reservoirs, because boundary layer and Jamin have little effect on the flow behavior in conventional reservoirs.
To investigate the impact of polymer viscoelasticity on microscopic remaining oil production, this study used microscopic oil displacement visualisation technology, numerical simulations in PolyFlow software, and core seepage experiments to study the viscoelasticity of polymers and their elastic effects in porous media. We analysed the forces affecting the microscopic remaining oil in different directions, and the influence of polymer viscoelasticity on the displacement efficiency of microscopic remaining oil. The results demonstrated that the greater the viscosity of the polymer, the greater the deformation and the higher the elasticity proportion. In addition, during the creep recovery experiment at low speed, the polymer solution was mainly viscous, while at high speed it was mainly elastic. When the polymer viscosity reached 125 mPa·s, the core effective permeability reached 100 × 10−3 μm2, and the equivalent shear rate exceeded 1000 s−1, the polymer exhibited an elastic effect in the porous medium and the viscosity curve displayed an ‘upward’ phenomenon. Moreover, the difference in the normal deviatoric stress and horizontal stress acting on the microscopic remaining oil increased exponentially as the viscosity of the polymer increased. The greater the viscosity of the polymer, the greater the remaining oil deformation. During the microscopic visualisation flooding experiment, the viscosity of the polymer, the scope of the mainstream line, and the recovery factor all increased. The scope of spread in the shunt line area significantly increased, but the recovery factor was significantly lower than that in the mainstream line. The amount of remaining oil in the unaffected microscopic area also decreased.
Block M of the Ordos Basin is a typical low-permeability tight sandstone gas accumulation. To develop these reservoirs, various horizontal well fracturing technologies, such as hydra-jet fracturing, open-hole packer multistage fracturing, and perf-and-plug multistage fracturing, have been implemented in practice, showing greatly varying performance. In this paper, six fracturing technologies adopted in Block M are reviewed in terms of principle, applicability, advantages, and disadvantages, and their field application effects are compared from the technical and economic perspectives. Furthermore, the main factors affecting the productivity of fractured horizontal wells are determined using the entropy method, the causes for the difference in application effects of the fracturing technologies are analyzed, and a comprehensive productivity impact index (CPII) in good correlation with the single-well production of fractured horizontal wells is constructed. This article provides a simple and applicable method for predicting the performance of multi-frac horizontal wells that takes multiple factors into account. The results can be used to select completion methods and optimize fracturing parameters in similar reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.