Background
Agroforestry (AF) is an ancient tradition in Ethiopian dryland farming system. Several studies have examined system design, soil fertility management and system interactions, but the biodiversity and mitigation aspects of climate change have received less focus. We assessed the diversity of woody species, biomass carbon (C), and soil organic carbon (SOC) stock associated with indigenous dryland AF practices. A total of 197 smallholder farmers representing four AF practices (home garden, parkland, boundary plantation, and woodlot) from lowland, midland, and highland areas were systematically selected. The inventory of woody species was carried out on each farm's randomly formed plot.
Results
We identified a total of 59 woody species representing 48 genera and 32 families. Shannon diversity index (H') was highest in home garden and parkland AF, while woodlots had the highest mean total stock of biomass C (31 Mg C ha−1). C stocks for smallholding systems (total biomass C and SOC 0–60 cm) ranged from 77–135 Mg ha−1. Total biomass C stocks were significantly correlated with abundance (Spearman r = 0.333; p = 0.002) but biomass components were not significantly correlated with H'. SOC soil depth stock (0–60 cm) was positively and significantly associated with H' (Spearman r = 0.291 & 0.351; p < 0.01).
Conclusions
We report greater species richness in home garden and parkland AF systems than in woodlots. While parkland AF produce lower biomass and SOC stock relative to other AF systems. The strategic use of home gardens and boundary planting can improve tree diversity and carbon storage in Ethiopian dryland ecosystems.
Field pea is grown by smallholder farmers in Ethiopia as a source of food, fodder, income, and soil fertility. This study explores intraspecific diversity of field pea and its contribution to farmers' livelihoods in two agroecological zones of South Tigray and South Wollo, northeastern Ethiopia. Interviews were conducted with 168 farming households. The number of varieties and the Shannon Diversity Index (SDI) were higher in South Tigray (seven varieties, 0.35 SDI) than South Wollo (two varieties, 0.025 SDI). Farmers in South Tigray plant field pea during two growing seasons, allowing for integration of multiple varieties into their farming systems. The price of one field pea type from South Tigray known as "DEKOKO" was twice as high as other field pea varieties, most likely due to high demand and relatively low supply. Key informants reported "DEKOKO" has become less common in their communities, with diseases and pests reported as major production constraints. Multistakeholder collaboration is recommended to enhance the contribution of field pea to Ethiopian farming systems.
Background
In Ethiopia, biomass contributes to about 92% of the household fuel consumption. As a result, deforestation rate has alarmingly increased associated with greenhouse gas (GHG) emissions and land degradation. The concerned government agencies have been widely making concerted efforts to reverse the situation by of promotion of improved cookstoves (ICS). However, the performance of these technologies in terms of saving fuelwood and their contribution to CO2 emission reduction in a real kitchen was not studied systematically. Thus, this research was initiated to address the knowledge gap.
Methods
The study was conducted in Tigray region in northern Ethiopia. The study households were selected following cross-sectional and longitudinal study designs. A kitchen performance test (KPT) was carried out based on 3 days of repeated fuelwood use measurements to compare the wood-saving performance of ICS in comparison with the traditional cookstove (TCS). The emission reduction potential of both ICS and TCS was calculated based on the Clean Development Mechanism and United Nation’s Framework of Convention on Climate Change and presented in CO2 equivalent (CO2e).
Results
The result suggests significant differences in total and per capita wood consumption (p < 0.05) between improved and TCS. The use of Mirt and Tikikil compared to the traditional stove has reduced the household wood consumption by 35% and 18%, respectively. Furthermore, ICS stoves also reduced CO2e emission per stove per year by 0.65 and 0.27 tons, respectively.
Conclusion
The study deals with the significant contribution that the shift from TCS to the ICS brought in terms of reducing the amount of fuelwood used at household level and the carbon emission per capita. It addresses the crucial roles of such technologies in reducing forest degradation and the associated ecosystem loss. Therefore, policy aimed at reducing greenhouse gas emissions in developing countries at household level should at least start via promotions of ICS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.