Immune checkpoint blockade of the inhibitory immune receptors PD-L1, PD-1 and CTLA-4 has emerged as a successful treatment strategy for several advanced cancers. Here we demonstrate that miR-424(322) regulates the PD-L1/PD-1 and CD80/CTLA-4 pathways in chemoresistant ovarian cancer. miR-424(322) is inversely correlated with PD-L1, PD-1, CD80 and CTLA-4 expression. High levels of miR-424(322) in the tumours are positively correlated with the progression-free survival of ovarian cancer patients. Mechanistic investigations demonstrated that miR-424(322) inhibited PD-L1 and CD80 expression through direct binding to the 3′-untranslated region. Restoration of miR-424(322) expression reverses chemoresistance, which is accompanied by blockage of the PD-L1 immune checkpoint. The synergistic effect of chemotherapy and immunotherapy is associated with the proliferation of functional cytotoxic CD8+ T cells and the inhibition of myeloid-derived suppressive cells and regulatory T cells. Collectively, our data suggest a biological and functional interaction between PD-L1 and chemoresistance through the microRNA regulatory cascade.
Tumour radiotherapy resistance involves the cell cycle pathway. CDC25 phosphatases are key cell cycle regulators. However, how CDC25 activity is precisely controlled remains largely unknown. Here, we show that LIM domain-containing proteins, such as FHL1, increase inhibitory CDC25 phosphorylation by forming a complex with CHK2 and CDC25, and sequester CDC25 in the cytoplasm by forming another complex with 14-3-3 and CDC25, resulting in increased radioresistance in cancer cells. FHL1 expression, induced by ionizing irradiation in a SP1- and MLL1-dependent manner, positively correlates with radioresistance in cancer patients. We identify a cell-penetrating 11 amino-acid motif within LIM domains (eLIM) that is sufficient for binding CHK2 and CDC25, reducing the CHK2–CDC25 and CDC25–14-3-3 interaction and enhancing CDC25 activity and cancer radiosensitivity accompanied by mitotic catastrophe and apoptosis. Our results provide novel insight into molecular mechanisms underlying CDC25 activity regulation. LIM protein inhibition or use of eLIM may be new strategies for improving tumour radiosensitivity.
Background. The association between tumour-infiltrating immune cells and the prognosis of endometrial cancer (EC) is controversial due to the smaller sample sizes and limited statistical power of the extant studies. We carried out a meta-analysis of the relationship between tumour-infiltrating immune cells and EC survival outcomes. Methods. A literature search in multiple databases was carried out up to December 2019. Pooled hazard ratio (HRs) and 95% confidence intervals (CIs) were calculated by the Z-test to assess the association between infiltrating immune cells and overall survival (OS), progression-free survival (PFS), relapse-free survival (RFS), disease-specific survival (DSS), and disease-free survival (DFS). A subgroup analysis was performed based on the localisation of immune cells in tumour parenchyma or stroma, immune markers, and the International Federation of Gynecology and Obstetrics stage. Heterogeneity and publication bias between studies were evaluated by Cochran’s Q-test and Egger regression test, respectively. Results. Seventeen studies were included in the analysis. The pooled HR of OS, PFS, DSS, and DFS indicated that a high CD8+ T cell density was associated with a favorable prognosis in EC patients. A significant relationship was found between a high density of CD45RO+ T cells and a favorable OS in EC patients, but the FoxP3+ T cell density was not associated with either OS or RFS. A high TAM density was associated with a worse PFS. However, a sensitivity analysis indicated that the findings of PFS and DSS in CD8+ T cell and PFS in TAM were not robust results. Conclusion. This is the first meta-analysis of the relationship between tumour-infiltrating immune cells and the prognosis of EC. High CD8+ and CD45RO+ T cell densities in tumours were associated with favorable outcomes in EC patients.
Background: Currently, no large, nationwide studies have been conducted to analyze the demographic factors, underlying comorbidities, clinical outcomes, and health care utilization in rhabdomyolysis patients with and without acute kidney injury (AKI). Methods: We queried the National Inpatient Sample of Healthcare Cost and Utilization Project (HCUP) with patients with rhabdomyolysis from 2016 to 2018. The chi-squared test was used to compare categorical variables, and the adjusted Wald test was employed to compare quantitative variables. The logistic regression model was applied to calculate adjusted odds ratios (ORs) with 95% confidence intervals (95% CIs) to estimate the impact of AKI on outcomes in patients with rhabdomyolysis. Results: Among 111,085 rhabdomyolysis-related hospitalizations, a higher prevalence of AKI was noticed in older patients (mean age ± SD, 58.2 ± 21.6 vs. 53.8 ± 22.2), Medicare insurance (48.5% vs. 43.2%,), and patients with a higher Charlson Comorbidity Index score (CCI 3–5, 15.1% vs. 5.5%). AKI was found to be independently associated with higher mortality (adjusted odds ratio [aOR].3.33, 95% CI 2.33–4.75), longer hospital stays (adjusted difference 1.17 days, 95% CI: 1.00−1.34), and higher cost of hospital stay (adjusted difference $11,315.05, 95% CI: $9493.02–$13,137.07). Conclusions: AKI in patients hospitalized with rhabdomyolysis is related to adverse clinical outcomes and significant economic and survival burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.