A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0–10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing.
Summary Many bacterial genomes carry multiple prophages that compete with each other, potentially affecting the physiology, fitness, and pathogenicity of their hosts. However, molecular mechanisms of such prophage–prophage conflicts remain poorly understood. The genome of Shewanella oneidensis MR‐1, a Gammaproteobacterium residing in aquatic environments and notable for its ability to reduce metal ions, harbours four prophages, two of which (LambdaSo and MuSo2) form infectious virions during biofilm formation. Here, we constructed indicator strains of LambdaSo and MuSo2 by deleting the corresponding prophages from the MR‐1 chromosome and investigated their reproduction. Interestingly, the fitness of MuSo2 increased in the absence of LambdaSo, suggesting that prophage LambdaSo repressed MuSo2 reproduction. Partial deletion of LambdaSo from the MR‐1 chromosome revealed that gene cluster R of LambdaSo, which was responsible for the switch to the lytic cycle and LambdaSo genome replication initiation, was necessary and sufficient to repress MuSo2. Furthermore, activation of cluster R genes facilitated replication of cluster R‐encoding DNA and inhibited host and MuSo2 DNA replication. These findings suggest that LambdaSo represses MuSo2 propagation by inhibiting DNA replication during simultaneous induction. We predict that such a mechanism of inter‐prophage interference is more widespread in bacteria than currently appreciated.
Fish sex identification is a basic technique of great importance for both fish genetic studies and fisheries. Due to the sexual reversal phenomenon in many fish species, a simple and rapid molecular identification method for fish genetic sex is urgently needed to suit versatile detection scenarios, such as point-of-need applications. In this study, we took Cynoglossus semilaevis as an example, established a recombinase-aided amplification (RAA)-based method for sex identification, and combined the RAA-detection with two result visualization approaches with distinct features, capillary electrophoresis (CE) and lateral flow dipstick (LFD). Specific primers and probe were designed to specifically detect the sex chromosome W of C. semilaevis in order to distinguish the genetic sex between males, pseudo-males and females. To evaluate the performance of our methods, the genetic sex for twenty-eight males, sixty-eight pseudo-males and fifty-four females were examined with the RAA-based method and classical PCR-based genotyping method, demonstrating the consistent results of sex identification between both methods. The RAA-LFD method is operationally simple, rapid (~ 30 min) and holds great potential for point-of-need applications of fish sex identification, including fishery fields. The method presented here could be effective for identifying fish gender with the ZW karyotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.