Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic performance of PbS QDSCs. A uniform CdS layer was directly coated on previously grown PbS-TiO2 photoanode to protect the PbS from the chemical attack of polysulfide electrolytes. A remarkable short-circuit photocurrent density (approximately 10.4 mA/cm2) for PbS/CdS co-sensitized solar cell was recorded while the photocurrent density of only PbS-sensitized solar cells was lower than 3 mA/cm2. The power conversion efficiency of the PbS/CdS co-sensitized solar cell reached 1.3%, which was beyond the arithmetic addition of the efficiencies of single constituents (PbS and CdS). These results indicate that the synergistic combination of PbS with CdS may provide a stable and effective sensitizer for practical solar cell applications.
Nanostructures composited of vertical rutile TiO2 nanorod arrays and Sb2S3 nanoparticles were prepared on an F:SnO2 conductive glass by hydrothermal method and successive ionic layer adsorption and reaction method at low temperature. Sb2S3-sensitized TiO2 nanorod solar cells were assembled using the Sb2S3-TiO2 nanostructure as the photoanode and a polysulfide solution as an electrolyte. Annealing effects on the optical and photovoltaic properties of Sb2S3-TiO2 nanostructure were studied systematically. As the annealing temperatures increased, a regular red shift of the bandgap of Sb2S3 nanoparticles was observed, where the bandgap decreased from 2.25 to 1.73 eV. At the same time, the photovoltaic conversion efficiency for the nanostructured solar cells increased from 0.46% up to 1.47% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by the annealing treatment.
Uniform zinc oxide (ZnO) nanosheet arrays were grown on woven titanium wires using a low temperature hydrothermal method. Photoanodes were prepared by depositing CdS and CdSe quantum dots onto the ZnO nanosheet arrays by a successive ionic layer adsorption and reaction (SILAR) method. Solar cells were assembled using these nanostructured photoanodes and their photovoltaic performance was characterized. The effect of using SILAR cycles for the deposition of quantum dots on the performance of these nanostructured solar cells was investigated systematically. The overall light-to-electricity conversion efficiency of 0.98% was achieved under 100 mW cm À2 illumination for flexible CdS/CdSe cosensitized solar cells using conventional Pt foils as counter electrodes. To further improve the performance of the flexible solar cells, PbS and Cu 2 S counter electrodes based on Pb and Cu foils were fabricated. The best conversion efficiencies of flexible CdS/CdSe co-sensitized solar cells using Cu 2 S and PbS counter electrodes were 3.4% and 2.5%, which demonstrated a significant enhancement in values for short circuit current, open circuit voltage, and fill factor compared to those obtained with the commonly used Pt and Au electrodes.
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.