This article describes how piezoelectric transducers embedded in the adhesive bond-line of lap-joints can be used to effectively monitor structural integrity. Various lap-joint coupons with embedded piezoelectric transducers were manufactured with and without artificial contamination at the bond-line and tested statically and cyclically. A novel scheme based on the electromechanical impedance response of the transducer was implemented to predict the failure of the tested lap-joint samples. The results from the mechanical testing indicated that monitoring the transducer’s electromechanical impedance is an effective way of predicting the failure of the bond-line. Specifically for static tests, local damage to the bond-line was consistently detected at approximately 84% of the failure load for transducers located at the center of the bond-line, whereas for transducers embedded near the edge of the bond-line, the failure of the adhesive was detected at 60% of the failure load. Moreover, preliminary fatigue tests showed that significant changes in the electromechanical impedance signals were apparent starting at 60% of the life of the bond-line. In addition to the mechanical testing, the effectiveness of the proposed electromechanical impedance–based scheme was investigated by means of a three-dimensional finite element model corresponding to the specific coupon geometry tested and through a two-dimensional analytical solution.
Monitoring the bondline integrity of adhesively bonded joints is one of the most critical concerns in the design of aircraft structures to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations require assembling the primary airframe structure using the inefficient “black-aluminum” approach, that is, drill holes and use fasteners. Furthermore, state-of-the-art non-destructive evaluation and structural health monitoring approaches are not yet able to provide mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the introduction and feasibility investigation of a novel bondline integrity monitoring method that is based on the use of piezoelectric sensors embedded inside adhesively bonded joints in order to provide an early detection of bondline degradation. The proposed approach incorporates (1) micro-sensors embedded inside the adhesive layer leaving a minimal footprint on the material, (2) numerical and analytical modeling of the electromechanical impedance of the adhesive bondline, and (3) electromechanical impedance–based diagnostic algorithms for monitoring and assessing the bondline integrity. The experimental validation and assessment of the proposed approach is achieved via the design and fabrication of prototype adhesively bonded lap joints with embedded piezoelectric sensors and a series of mechanical tests under various static and dynamic (fatigue) loading conditions. The obtained results demonstrate the potential of the proposed approach in providing increased confidence on the use of adhesively bonded joints for aerospace structures.
Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations require assembling the composites using the inefficient "black-aluminum" approach, i.e. drill holes and use fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is to investigate the feasibility to embed piezoelectric sensors into the adhesively bonded joints in order to detect bondlines degradation. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. This approach is based on the use of (i) micro-sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) EMI based diagnostic algorithms for monitoring the bondline integrity, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) environment. The obtained results demonstrate the potential of the approach in providing increased confidence on the use of bonded joints for aerospace structures.
Tactile sensing is paramount for robots operating in human-centered environments to help in understanding interaction with objects. To enable robots to have sophisticated tactile sensing capability, researchers have developed different kinds of electronic skins for robotic hands and arms in order to realize the ‘sense of touch’. Recently, Stanford Structures and Composites Laboratory developed a robotic electronic skin based on a network of multi-modal micro-sensors. This skin was able to identify temperature profiles and detect arm strikes through embedded sensors. However, sensing for the static pressure load is yet to be investigated. In this work, an electromechanical impedance-based method is proposed to investigate the response of piezoelectric sensors under static normal pressure loads. The smart skin sample was firstly fabricated by embedding a piezoelectric sensor into the soft silicone. Then, a series of static pressure tests to the skin were conducted. Test results showed that the first peak of the real part impedance signal was sensitive to static pressure load, and by using the proposed diagnostic method, this test setup could detect a resolution of 0.5 N force. Numerical simulation methods were then performed to validate the experimental results. The results of the numerical simulation prove the validity of the experiments, as well as the robustness of the proposed method in detecting static pressure loads using the smart skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.