Zn metal anode has garnered growing scientific and industrial interest owing to its appropriate redox potential, low cost, and high safety. Nevertheless, the instability of Zn anode caused by dendrite formation, hydrogen evolution, and side reactions has greatly hampered its commercialization. Herein, an in situ grown ZnSe overlayer is crafted over one side of commercial Zn foil via chemical vapor deposition in a scalable manner, aiming to achieve optimized electrolyte/Zn interfaces with large‐scale viability. Impressively, thus‐derived ZnSe coating functions as a cultivator to guide oriented growth of Zn (002) plane at the infancy stage of stripping/plating cycles, thereby inhibiting the formation of Zn dendrites and the occurrence of side reactions. As a result, high cyclic stability (1530 h at 1.0 mA cm−2/1.0 mAh cm−2; 172 h at 30.0 mA cm−2/10.0 mAh cm−2) in symmetric cells is harvested. Meanwhile, when paired with V2O5 based cathode, assembled full cell achieves an outstanding capacity (194.5 mAh g−1) and elongated lifespan (a capacity retention of 84% after 1000 cycles) at 5.0 A g−1. The reversible Zn anode enabled by the interfacial manipulation strategy via ZnSe cultivator is anticipated to satisfy the demand of commercial use.
Recent years have witnessed the renaissance of aqueous Zn-ion batteries (AZIBs). Nevertheless, current development of high-performance AZIBs is confronted by rapid capacity decay and irreversible cycling of Zn anodes, whose...
Separator modification has recently blossomed as an effective strategy to enable dendrite‐free Zn metal anodes. Nonetheless, the explored avenues are not conducive to mass production by far, and little attention is paid to the essence of separator regulation. Herein, a scalable Ti3C2Tx MXene‐decorated Janus separator is designed by spray‐printing MXene nanosheets over one side of commercial glass fibre (GF). The thus‐derived MXene‐GF separator affords abundant surface polar groups, good electrolyte wettability, and high ionic conductivity, which is beneficial to homogenizing local current distribution and promoting Zn nucleation kinetics. It is noted that MXene‐GF displays adjustable dielectric constants with an optimized value of 53.5, offering a directional electrical field to expedite Zn‐ion flux and repel anions. Accordingly, dendrite‐free Zn anode equipped within symmetric cells can be achieved with MXene‐GF, enabling a stable cycling for 1180 h at 1 mA cm−2 and 1200 h at 5 mA cm−2. More impressively, the assembled aqueous Zn‐ion battery full cell with Janus MXene‐GF separator realizes a favorable capacity retention ratio (77.9%) upon cycling for 1000 cycles at 5.0 A g−1. This strategy with scalability and effectiveness offers a new insight into high‐performance metal anodes.
The burgeoning Li‐ion battery is regarded as a powerful energy storage system by virtue of its high energy density. However, inescapable issues concerning safety and cost aspects retard its prospect in certain application scenarios. Accordingly, strenuous efforts have been devoted to the development of the emerging aqueous Zn‐ion battery (AZIB) as an alternative to inflammable organic batteries. In particular, the instability from the anode side severely impedes the commercialization of AZIB. Constructing an artificial interphase layer (AIL) has been widely employed as an effective strategy to stabilize the Zn anode. This review specializes in the state‐of‐the‐art of AIL design for Zn anode protection, encompassing the preparation methods, mechanism investigations, and device performances based on the classification of functional materials. To begin with, the origins of Zn instability are interpreted from the perspective of electrical field, mass transfer, and nucleation process, followed by a comprehensive summary with respect to functions of AIL and its designing criteria. In the end, current challenges and future outlooks based upon theoretical and experimental considerations are included.
Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.