This study found that could play a role in microbiota dysbiosis via the secreted antagonistic substances against probiotics. Moreover, the ratio of to the important probiotics and was identified as a valuable biomarker for screening early CRC.
Fusobacterium nucleatum (Fn) is a tumor-associated obligate anaerobic bacterium, which has a role in the progression of colorectal cancer (CRC). Fn can invade and promote colon epithelial cells proliferation. However, how Fn survives and proliferates in its host cells remains largely unknown. In this study, we aimed to determine the molecular mechanisms underlying the morphology, survival, and proliferation of Fn in THP-1-derived macrophages (dTHP1). For the first time, we found that Fn is a facultative intracellular bacterium that can survive and limited proliferate in dTHP1 cells up to 72 h, and a live Fn infection can inhibit apoptosis of dTHP1 cells by activating the PI3K and ERK pathways. Both Fn bacteria and dTHP1 cells exhibit obvious morphological changes during infection. In addition, Infection of Fn-induced indoleamine 2,3-dioxygenase (IDO) expression by TNF-α-dependent and LPS-dependent pathway in a time-dependent and dose-dependent manner, and the IDO-induced low tryptophan and high kynurenine environment inhibited the intracellular multiplication of Fn in dTHP1 cells. IDO expression further impaired the function of peripheral blood lymphocytes, permitting the escape of Fn-infected macrophages from cell death. IDO inhibition abrogated this effect caused by Fn and relieved immune suppression. In conclusion, we identified IDO as an important player mediating intracellular Fn proliferation in macrophages, and inhibition of IDO may aggravate infection in Fn-associated tumor immunotherapy.
Sustaining efficacious T cell-mediated antitumor immune responses in the tumor tissues is the key to the success of cancer immunotherapy. Current strategies leverage altering the signals T cells sense in the tumor microenvironment (TME). Checkpoint inhibitor-based approaches block inhibitory signals such as PD-1 whereas cytokine-based therapies increase the level of immune-stimulatory cytokines such as IL-2. Besides extrinsic signals, the genetic circuit within T cells also participates in determining the nature and trajectory of antitumor immune responses. Here, we showed that efficacy of the IL33-based tumor immunotherapy was greatly enhanced in mice with T cell-specific Eomes deficiency. Mechanistically, we demonstrated that Eomes deficient mice had diminished proportions of exhausted/dysfunctional CD8+ T cells but increased percentages of tissue resident and stem-like CD8+ T cells in the TME. In addition, the IFNγ+TCF1+ CD8+ T cell subset was markedly increased in the Eomes deficient mice. We further demonstrated that Eomes bound directly to the transcription regulatory regions of exhaustion and tissue residency genes. In contrast to its role in inhibiting T cell immune responses at the tumor site, Eomes promoted generation of central memory T cells in the peripheral lymphoid system and memory recall responses against tumor growth at a distal tissue site. Finally, we showed that Eomes deficiency in T cells also resulted in increased efficacy of PD-1-blockade tumor immunotherapy. In all, our study indicates that Eomes plays a critical role in restricting prolonged T cell-mediated antitumor immune responses in the TME whereas promoting adaptive immunity in peripheral lymphoid organs.
Fusobacterium nucleatum (Fn) is a critical colorectal cancer (CRC)-associated bacterium. DNA hunger/stationary phase protective proteins (Dps) are bacterial ferritins that protect DNA from oxidative stress. However, little is known about the regulatory roles of Fn-Dps towards host cellular functions. Here, we identified Fn-Dps from the culture supernatant of Fn by mass spectrometry, and prepared the recombinant of Fn-Dps protein. We show a novel virulence protein of Fn, Fn-Dps, which lyses and disrupts erythrocytes by the competition for iron acquisition. Also, Fn-Dps facilitates intracellular survival of Fn in macrophages by upregulating the expression of the chemokine CCL2/CCL7. In addition, Fn-Dps can elicit a strong humoral immune response, and mucosal immunization with Fn-Dps conferred protection against Fn in the intestinal tract. Moreover, a high level of anti-Fn-Dps antibody was prevalent in populations, and elevated anti-Fn-Dps antibody levels were observed in CRC patients. Furthermore, Fn-Dps promotes the migration of CRC cells via the CCL2/CCL7-induced epithelial-mesenchymal transition (EMT) and promotes CRC metastasis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.