Causal inference from observational data often assumes "ignorability," that all confounders are observed. This assumption is standard yet untestable. However, many scientific studies involve multiple causes, different variables whose effects are simultaneously of interest. We propose the deconfounder, an algorithm that combines unsupervised machine learning and predictive model checking to perform causal inference in multiple-cause settings. The deconfounder infers a latent variable as a substitute for unobserved confounders and then uses that substitute to perform causal inference. We develop theory for the deconfounder, and show that it requires weaker assumptions than classical causal inference. We analyze its performance in three types of studies: semi-simulated data around smoking and lung cancer, semi-simulated data around genome-wide association studies, and a real dataset about actors and movie revenue. The deconfounder provides a checkable approach to estimating closer-to-truth causal effects.
Weighting methods are widely used to adjust for covariates in observational studies, sample surveys, and regression settings. In this paper, we study a class of recently proposed weighting methods which find the weights of minimum dispersion that approximately balance the covariates. We call these weights minimal weights and study them under a common optimization framework. The key observation is the connection between approximate covariate balance and shrinkage estimation of the propensity score. This connection leads to both theoretical and practical developments. From a theoretical standpoint, we characterize the asymptotic properties of minimal weights and show that, under standard smoothness conditions on the propensity score function, minimal weights are consistent estimates of the true inverse probability weights. Also, we show that the resulting weighting estimator is consistent, asymptotically normal, and semiparametrically efficient. From a practical standpoint, we present a finite sample oracle inequality that bounds the loss incurred by balancing more functions of the covariates than strictly needed. This inequality shows that minimal weights implicitly bound the number of active covariate balance constraints. We finally provide a tuning algorithm for choosing the degree of approximate balance in minimal weights. We conclude the paper with 1 arXiv:1705.00998v3 [stat.ME] 25 Apr 2019 four empirical studies that suggest approximate balance is preferable to exact balance, especially when there is limited overlap in covariate distributions. In these studies, we show that the root mean squared error of the weighting estimator can be reduced by as much as a half with approximate balance.
A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, variational Bayes (VB) methods have emerged as a popular alternative to the classical Markov chain Monte Carlo (MCMC) methods. VB methods tend to be faster while achieving comparable predictive performance. However, there are few theoretical results around VB. In this paper, we establish frequentist consistency and asymptotic normality of VB methods. Specifically, we connect VB methods to point estimates based on variational approximations, called frequentist variational approximations, and we use the connection to prove a variational Bernstein-von Mises theorem. The theorem leverages the theoretical characterizations of frequentist variational approximations to understand asymptotic properties of VB. In summary, we prove that (1) the VB posterior converges to the Kullback-Leibler (KL) minimizer of a normal distribution, centered at the truth and (2) the corresponding variational expectation of the parameter is consistent and asymptotically normal. As applications of the theorem, we derive asymptotic properties of VB posteriors in Bayesian mixture models, Bayesian generalized linear mixed models, and Bayesian stochastic block models. We conduct a simulation study to illustrate these theoretical results.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.