It has been conjectured that multilingual information can help monolingual word sense disambiguation (WSD). However, existing WSD systems rarely consider multilingual information, and no effective method has been proposed for improving WSD by generating translations. In this paper, we present a novel approach that improves the performance of a base WSD system using machine translation. Since our approach is language independent, we perform WSD experiments on several languages. The results demonstrate that our methods can consistently improve the performance of WSD systems, and obtain state-ofthe-art results in both English and multilingual WSD. To facilitate the use of lexical translation information, we also propose BABALIGN, an precise bitext alignment algorithm which is guided by multilingual lexical correspondences from BabelNet.
Identification of the most frequent sense of a polysemous word is an important semantic task. We introduce two concepts that can benefit MFS detection: companions, which are the most frequently co-occurring words, and the most frequent translation in a bitext. We present two novel methods that incorporate these new concepts, and show that they advance the state of the art on MFS detection.
We propose cognate projection as a method of crosslingual transfer for inflection generation in the context of the SIGMORPHON 2019 Shared Task. The results on four language pairs show the method is effective when no low-resource training data is available.
Acquisition of multilingual training data continues to be a challenge in word sense disambiguation (WSD). To address this problem, unsupervised approaches have been developed in recent years that automatically generate sense annotations suitable for training supervised WSD systems. We present three new methods to creating sense-annotated corpora, which leverage translations, parallel corpora, lexical resources, and contextual and synset embeddings. Our semi-supervised method applies machine translation to transfer existing sense annotations to other languages. Our two unsupervised methods use a knowledge-based WSD system to annotate a parallel corpus, and refine the resulting sense annotations by identifying lexical translations. We obtain state-ofthe-art results on standard WSD benchmarks. Our annotated corpora are made available at: GitHub Link.
This paper presents the University of Alberta systems and results in the SIGMOR-PHON 2020 Task 1: Multilingual Graphemeto-Phoneme Conversion. Following previous SIGMORPHON shared tasks, we define a lowresource setting with 100 training instances. We experiment with three transduction approaches in both standard and low-resource settings, as well as on the related task of phoneme-to-grapheme conversion. We propose a method for synthesizing training data using a combination of diverse models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.