The deep cryogenic temperatures encountered in aerospace present significant challenges for the performance of elastic materials in spacecraft and related apparatus. Reported elastic carbon or ceramic aerogels overcome the low-temperature brittleness in conventional elastic polymers. However, complicated fabrication process and high costs greatly limited their applications. In this work, super-elasticity at a deep cryogenic temperature of covalently crosslinked polyimide (PI) aerogels is achieved based on scalable and low-cost directional dimethyl sulfoxide crystals assisted freeze gelation and freeze-drying strategy. The covalently crosslinked chemical structure, cellular architecture, negative Poisson’s ratio (−0.2), low volume shrinkage (3.1%), and ultralow density (6.1 mg/cm3) endow the PI aerogels with an elastic compressive strain up to 99% even in liquid helium (4 K), almost zero loss of resilience after dramatic thermal shocks (∆T = 569 K), and fatigue resistance over 5000 times compressive cycles. This work provides a new pathway for constructing polymer-based materials with super-elasticity at deep cryogenic temperature, demonstrating much promise for extensive applications in ongoing and near-future aerospace exploration.
Polymer-based conductive nanocomposites are promising for electromagnetic interference (EMI) shielding to ensure stable operations of electronic devices and protect humans from electromagnetic radiation. Although MXenes have shown high EMI shielding performances, it remains a great challenge to construct highly efficient EMI shielding polymer/MXene composite films with minimal MXene content and high durability to harsh conditions. Here, hierarchically porous polyimide (PI)/Ti 3 C 2 T x films with consecutively conductive pathways have been constructed via a unidirectional PI aerogel-assisted immersion and hot-pressing strategy. Contributed by special architectures and high conductivities, PI/Ti 3 C 2 T x films with 2.0 volume % Ti 3 C 2 T x have high absolute EMI shielding effectiveness up to 15,527 dB cm 2 g −1 at the thickness of 90 μm. Superior EMI shielding performance can be retained even after being subjected to hygrothermal or combustion environments, cryogenic (−196°C) or high (250°C) temperatures, and rapid thermal shock (∆T = 446°C), demonstrating high potential as high-performance EMI shielding materials resisting harsh conditions.
Designing electronic skin (e-skin) with proteins is a critical way to endow e-skin with biocompatibility, but engineering protein structures to achieve controllable mechanical properties and self-healing ability remains a challenge. Here, we develop a hybrid gluten network through the incorporation of a eutectic gallium indium alloy (EGaIn) to design a self-healable e-skin with improved mechanical properties. The intrinsic reversible disulfide bond/sulfhydryl group reconfiguration of gluten networks is explored as a driving force to introduce EGaIn as a chemical cross-linker, thus inducing secondary structure rearrangement of gluten to form additional β-sheets as physical cross-linkers. Remarkably, the obtained gluten-based material is self-healing, achieves synthetic material-like stretchability (>1600%) and possesses the ability to promote skin cell proliferation. The final e-skin is biocompatible and biodegradable and can sense strain changes from human motions of different scales. The protein network microregulation method paves the way for future skin-like protein-based e-skin.
The deep cryogenic temperatures encountered in aerospace present significant challenges for the performance of elastic materials in spacecrafts and related apparatus. Reported elastic carbon or ceramic aerogels overcome the low-temperature brittleness in conventional elastic polymers. However, complicated fabrication process and high costs greatly limited their applications. In this work, super-elasticity at deep cryogenic temperature of covalently crosslinked polyimide (PI) aerogels is achieved based on scalable and low-cost directional dimethyl sulfoxide crystals assisted freeze-gelling and freeze-drying strategy. The covalently crosslinked chemical structure, cellular architecture, negative Poisson’s ratio (-0.2), extremely low volume shrinkage (3.1%) and ultralow density (6.1 mg/cm3) endow the PI aerogels with an elastic compressive strain up to 99% even in liquid helium (4K), almost zero loss of resilience after dramatic thermal shocks (∆T = 569 K), and fatigue resistance over 5000 times compressive cycles. This work provides a new pathway for constructing polymer-based materials with super-elasticity at deep cryogenic temperature, demonstrating much promise for extensive applications in ongoing and near-future aerospace exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.