Due to some similarity of innate immunity between insects and mammals, the study of the molecular mechanism of innate immunity in insects has become a focus of research. However, the exact molecular and cellular basis of immune system in insect remains poorly understood. Characterization of the transcriptomic response to Cd of spider is an effective approach to understanding the innate immunity mechanisms. In this study, we carried out transcriptome sequencing and gene expression analyses to develop molecular resources for Pardosa pseudoannulata venom glands with and without Cd treatments. A total of 92,778 assembled unigenes and 237 Cd stress-associated differentially expressed genes between the Cd-treated and control groups were obtained. Expression profile analysis demonstrated that immunity-related genes involved in bacterial invasion of epithelial cells, leukocyte transendothelial migration, platelet activation, apoptosis, phagosome, and Rap1 signaling pathway were upregulated by Cd exposure, except the genes involved in PPAR signaling pathway were downregulated. Our results provide the first comprehensive transcriptome dataset of venom glands in P. pseudoannulata response to Cd, which is valuable for throws light on the immunotoxicity mechanism of Cd, and the innate immunity complexity.
Cadmium (Cd) is a heavy metal that can cause irreversible toxicity to animals, and is an environmental pollutant in farmlands. Spiders are considered to be an excellent model for investigating the impacts of heavy metals on the environment. To date, the changes at the molecular level in the cerebral ganglia of spiders are poorly understood. Cd exposure leads to strong damage in the nervous system, such as apoptosis and necrosis of nerve cells, therefore we conducted a transcriptomic analysis of Pardosa pseudoannulata cerebral ganglia under Cd stress to profile differential gene expression (DGE). We obtained a total of 123,328 assembled unigenes, and 1441 Cd stress-associated DEGs between the Cd-treated and control groups. Expression profile analysis demonstrated that many genes involved in calcium signaling, cGMP—PKG signaling, tyrosine metabolism, phototransduction–fly, melanogenesis and isoquinoline alkaloid biosynthesis were up-regulated under Cd stress, whereas oxidative phosphorylation-related, nervous disease-associated, non-alcoholic fatty liver disease-associated, and ribosomal-associated genes were down-regulated. Here, we provide a comprehensive set of DEGs influenced by Cd stress, and heavy metal stress, and provide new information for elucidating the neurotoxic mechanisms of Cd stress in spiders.
In this research, we carried out a tritrophic bioassay to assess the potential effect of Cry1Ab-expressing rice on the foraging behavior of the common wolf spider Pardosa pseudoannulata and its underlying molecular mechanism. Results indicated the Bt-containing spiders expressed a higher foraging range when compared to controls. The high throughput de novo transcriptome sequencing was further carried out for central nervous system (CNS) of P. pseudoannulata with and without Cry1Ab intake. We obtained 120, 985 unigenes with a mean length of 529.73 bp. Functional analysis of differentially expressed genes (DEGs) showed the expression levels of genes related to energy metabolism were changed in response to Cry1Ab, which may contribute to a more active foraging behavior. In addition, some DEGs also have a function related to metal ion binding, implying a potential influence on metal ionsdependent reactions. This may be associated with Cry1Ab resistance mechanism in the spider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.