In rugged mountain areas, the lateral aerodynamic force and aerodynamic lift caused by strong winds are the main reasons for the lateral overturning of trains and the destruction of buildings and structures along the railroad line. Therefore, it is important to build a strong wind alarm system along the railroad line, and a reasonable and accurate short-time forecast of a strong wind is the basis of it. In this research, two methods of constructive function and time-series decomposition are proposed to pre-process the input wind speed for periodic strong winds in mountainous areas. Then, the improved Auto-Regressive Integrated Moving Average model time-series model was established through the steps of a white noise test, data stationarity test, model recognition, and order determination. Finally, the effectiveness of the improved wind speed prediction was examined. The results of the research showed that rational choice of processing functions has a large impact on wind speed prediction results. The prediction accuracy of the improved ARIMA model proposed in this paper is better than the results of the traditional Seasonal Auto-Regressive Integrated Moving Average model, and it can quickly and accurately realize the short-time wind speed prediction along the railroad line in rugged mountains. In addition, the improved ARIMA model has verified its universality in different mountainous places.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.