We propose a method for diffraction simulation with both shifted destination window and a large oblique illumination. Based on the angular spectrum theory, we first derive a generalized transfer function (GTF) and a generalized point-spread function (GSPF) suitable for free-space diffraction simulation when both a shifted destination window and a large oblique illumination are taken into account. Then we analyze the sampling error caused by sampling of the GTF and the GSPF for numerical simulation based on fast Fourier transform (FFT), and find out an analytical formula for determining a criteria distance of Zc. Theoretical analysis and simulation results prove that the FFT-based GTF sampling algorithm is valid for diffraction simulation with a diffraction distance less than or equal to Zc, while the FFT-based GSPF sampling is only suitable for the simulation with a distance larger than or equal to Zc. Based on theoretical analysis, we propose the hybrid GTF-GSPF algorithm suitable for simulation of both near- and far-field diffractions with shifted destination window and large oblique source illumination at the same time. Finally, some simulation results are given to verify the feasibility of the algorithm.
A simple noniterative algorithm for retrieval of the unknown phase shifts in phase-shifting holography is proposed. In this algorithm, the phase shift value between two phase-shifting holograms can be calculated through a simple analytical formula that is derived according to the fact that there exist some points whose intensity difference between two phase-shifting holograms is equal to zero. Both the simulated and experimental results demonstrated the feasibility of this so-called zero difference algorithm over a wide range of phase shifts.
Pulses as short as 17.8 fs with a spectral bandwidth of 145 nm and central wavelength of 1118 nm have been generated from a Kerr-lens mode-locked Yb:CALGO oscillator. The oscillator operating at an average power of 26 mW and a repetition rate of 95.9 MHz is pumped by a cost-effective single-mode fiber coupled laser diode emitting 800 mW at 976 nm. The dispersion is compensated using a prism pair combined with broadband chirp mirrors. To the best of our knowledge, the pulse durations corresponding to approximately 4.8 optical cycle pulses are the shortest achieved durations through a Yb-doped bulk oscillator.
A simple and practical system for generation of vector beams with arbitrary polarization and complex-amplitude distributions is proposed. The system mainly consists of a scalar computer-generated hologram (CGH), a small-angle birefringent beam splitter (BBS), and a Fourier lens with a filtering aperture (FA). The CGH is placed in front of the Fourier lens. The BBS is inserted between the CGH and the Fourier lens. When the CGH specially designed according to the method described in this Letter is illuminated by a plane beam or a Gaussian beam, a desired vector beam can be obtained through the FA placed at the back focal plane of the Fourier lens. Because no coupling element and half-wave plate are to be placed between the CGH and the BBS, the extinction ratios of both the two orthogonal polarization components for the vector beam can be better than 10(-5) and so high-quality vector beams can be generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.