Breakdowns occurring in rf accelerating structures will limit the ultimate performance of future linear colliders such as the Compact Linear Collider (CLIC). Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN to better understand the vacuum breakdown mechanism in a simple setup. Measurements of the field enhancement factor show that the local breakdown field is constant and depends only on the electrode material. With copper electrodes, the local breakdown field is around 10:8 GV=m, independent of the gap distance. The value characterizes the electrode surface state, and the next macroscopic breakdown field can be well predicted. In breakdown rate experiments, where a constant field is applied to the electrodes, clusters of consecutive breakdowns alternate with quiet periods. The occurrence and lengths of these clusters and quiet periods depend on the evolution of. The application of a high field can even modify the electrode surface in the absence of breakdown. Measurements of time delays to breakdown show two distinct populations, immediate and delayed breakdowns, indicating that two different mechanisms could exist. The ratio of these two populations depends on the conditioning state of the electrodes and on material. Gas release during breakdown is dominated by H 2 and CO. This degassing is mainly due to electron-stimulated desorption. During the quiet periods without breakdown, gases are also released but the quantities are much smaller. All the measurements presented here emphasize the crucial role of field emission in the breakdown triggering.
The ESS Design: Accelerator 6The ESS Design: Target 66The ESS Design: Controls 93The ESS Design: Conventional Facilities 109Physica ScriptaPhys. Scr. 93 (2018) 014001 (121pp) https://doi.org/10. 1088/1402-4896/aa9bff This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Neutron scattering is a well-developed and extensively used means to get access to fundamental properties of biological matter as well as of physical materials. Until the end of the twentieth century that was mainly practiced with-and limited in performance by-the continuous flux of neutrons from ageing nuclear reactors (e.g. the Institut Laue-Langevin (ILL), the flagship of neutron research in Europe and in the world) [1]). Looking forward to the following two decades, an OECD report published in 1998 diagnosed the foreseeable decrease of the number of operational facilities [2] and the need to progress in performance. Considering the high scientific interest and the increasing importance of the subject for society at large, the report concluded by strongly recommending the construction of next generation neutron sources in America, Europe and Asia. Pulsed spallation neutron sources (SNS) using a proton beam power exceeding 1 MW were specifically mentioned as the most interesting high performance facilities in the future landscape of neutron laboratories.The USA was the first country to follow this advice by building the SNS in the Oak Ridge National Laboratory (ORNL) which started in 2006 [3, 4]. Japan followed in 2009 with the Japan Proton Accelerator Research Centre (J-PARC) in Tokai [5,6]. In Europe, the subject was part of a concerted effort to further develop the European world-leading largescale research infrastructures suite. In 2003, the European Strategy Forum for Research Infrastructures (ESFRI), set up by the Research Ministries of the Member States and associated countries, concluded that a 5 MW long-pulse, single target station layout with nominally 22 'public' instruments was the optimum technical reference design for an European Spallation Source (ESS) that would meet the needs of the European science community in the second quarter of the century [7].Six years later, in 2009, it materialised in a real project with the adoption of the site of Lund (Sweden). A preconstruction phase followed until the end of 2013 during which the design was finalised [8]. Construction then started with the first neutron beams planned to be available in 2019, and the ESS facility to be operational at full performance in 2025.2 Description 2.1 Principle and specifics. The high level parameters of ESS are shown in table 1. As at SNS and J-PARC, neutrons at ESS are produced by spallation, when the 2 GeV protons hit the meta...
a b s t r a c tOne source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.
The LHC is currently operating with a proton energy of 4 TeV and à functions at the ATLAS and CMS interaction points of 0.6 m. This is close to the design value at 7 TeV (à ¼ 0:55 m) and represented a challenge for various aspects of the machine operation. In particular, a huge effort was put into the optics commissioning and an unprecedented peak beating of around 7% was achieved in a high energy hadron collider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.