A large amount of buildings was damaged or destroyed by the 2011 Great East Japan tsunami. Numerous field surveys were conducted in order to collect the tsunami inundation extents and building damage data in the affected areas. Therefore, this event provides us with one of the most complete data set among tsunami events in history. In this study, fragility functions are derived using data provided by the Ministry of Land, Infrastructure and Transportation of Japan, with more than 250,000 structures surveyed. The set of data has details on damage level, structural material, number of stories per building and location (town). This information is crucial to the understanding of the causes of building damage, as differences in structural characteristics and building location can be taken into
We created a fault model with a Tohoku-type earthquake fault zone having a random slip distribution and performed stochastic tsunami hazard analysis using a logic tree. When the stochastic tsunami hazard analysis results and the Tohoku earthquake observation results were compared, the observation results of a GPS wave gauge off the southern Iwate coast indicated a return period equivalent to approximately 1,709 years (0.50 fractile), and the observation results of a GPS wave gauge off the shore of Fukushima Prefecture indicated a return period of 600 years (0.50 fractile). Analysis of the influence of the number of slip distribution patterns on the results of the stochastic tsunami hazard analysis showed that the number of slip distribution patterns considered greatly influenced the results of the hazard analysis for a relatively large wave height. When the 90 % confidence interval and coefficient of variation of tsunami wave height were defined as an index for projecting the uncertainty of tsunami wave height, the 90 % confidence interval was typically high in locations where the wave height of each fractile point was high. At a location offshore of the Boso Peninsula of Chiba Prefecture where the coefficient of variation reached the maximum, it was confirmed that variations in maximum wave height due to differences in slip distribution of the fault zone contributed to the coefficient of variation being large.
The singular value decomposition method is used to evaluate the eigenmodes of the tsunami inundation depth distribution and reduce the computational cost. The variations in three variables are considered earthquake fault uncertainties: the fault depth, slip amount, and slip distribution. A time-dependent probabilistic tsunami inundation assessment is performed with the BPT distribution to account for seismic imminence.
Abstract. This study presents a framework for rapid tsunami force predictions by the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A limited number of large-scale numerical analyses are performed for selection scenarios with variations in fault parameters to capture the distribution tendencies of the target risk indicators. Then, the proper orthogonal decomposition (POD) is applied to the analysis results to extract the principal modes that represent the temporal and spatial characteristics of tsunami forces. A surrogate model is then constructed by a linear combination of these modes, whose coefficients are defined as functions of the selected input parameters. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011. Combining 2D and 3D versions of the stabilized finite element method, we carry out a series of high-precision numerical analyses with different input parameters to obtain a set of time history data of the tsunami forces acting on buildings and the inundation depths. POD is applied to the data set to construct the surrogate model that is capable of providing the predictions equivalent to the simulation results almost instantaneously. Based on the acceptable accuracy of the obtained results, it was confirmed that the proposed framework is a useful tool for evaluating time-series data of hydrodynamic force acting on buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.