The European Infrasound Bulletin highlights infrasound activity produced mostly by anthropogenic sources, recorded all over Europe and collected in the course of the ARISE and ARISE2 projects (Atmospheric dynamics Research InfraStructure in Europe). Data includes high-frequency ([ 0.7 Hz) infrasound detections at 24 European infrasound arrays from nine different national institutions complemented with infrasound stations of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Data were acquired during 16 years of operation (from 2000 to 2015) and processed to identify and locate * 48,000 infrasound events within Europe. The source locations of these events were derived by combining at least two corresponding station detections per event. Comparisons with ground-truth sources, e.g., Scandinavian mining activity, are provided as well as comparisons with the CTBT Late Event Bulletin (LEB). Relocation is performed using ray-tracing methods to estimate celerity and back-azimuth corrections for source location based on meteorological wind and temperature values for each event derived from European Centre for Medium-range Weather Forecast (ECMWF) data. This study focuses on the analysis of repeating, man-made infrasound events (e.g., mining blasts and supersonic flights) and on the seasonal, weekly and diurnal variation of the infrasonic activity of sources in Europe. Drawing comparisons to previous studies shows that improvements in terms of detection, association and location are made within this study due to increasing the station density and thus the number of events and determined source regions. This improves the capability of the infrasound station network in Europe to more comprehensively estimate the activity of anthropogenic infrasound sources in Europe.
A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long‐term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.