BackgroundHIV/TB coinfection remains a major challenge even after the initiation of HAART. Little is known about Mycobacterium tuberculosis (Mtb) specific immune restoration in relation to immunologic and virologic outcomes after long-term HAART during co-infections with latent and active TB.MethodsA total of 232 adults, including 59 HIV patients with clinical TB (HIV + TB+), 125 HIV patients without clinical TB (HIV + TB-), 13 HIV negative active TB patients (HIV-TB+), and 10 HIV negative Tuberculin Skin TST positive (HIV-TST+), and 25 HIV-TST- individuals were recruited. HAART was initiated in 113 HIV + patients (28 TB + and 85 TB-), and anti-TB treatment for all TB cases. CD4+ T-cell count, HIV RNA load, and IFN-γ responses to ESAT-6/CFP-10 were measured at baseline, 6 months (M6), 18 months (M18) and 24 months (M24) after HAART initiation.ResultsThe majority of HIV + TB- (70%, 81%, 84%) as well as HIV + TB + patients (60%, 77%, 80%) had virologic success (HIV RNA < 50 copies/ml) by M6, M18 and M24, respectively. HAART also significantly increased CD4+ T-cell counts at 2 years in HIV + TB + (from 110.3 to 289.9 cells/μl), HIV + TB- patients (197.8 to 332.3 cells/μl), HIV + TST- (199 to 347 cells/μl) and HIV + TST + individuals (195 to 319 cells/μl). Overall, there was no significant difference in the percentage of patients that achieved virologic success and in total CD4+ counts increased between HIV patients with and without TB or LTBI. The Mtb specific IFN-γ response at baseline was significantly lower in HIV + TB + (3.6 pg/ml) compared to HIV-TB + patients (34.4 pg/ml) and HIV + TST + (46.3 pg/ml) individuals; and in HIV-TB + patients compared to HIV-TST + individuals (491.2 pg/ml). By M18 on HAART, the IFN-γ response remained impaired in HIV + TB + patients (18.1 pg/ml) while it normalized in HIV + TST + individuals (from 46.3 to 414.2 pg/ml).ConclusionsOur data show that clinical and latent TB infections do not influence virologic and immunologic outcomes of ART in HIV patients. Despite this, HAART was unable to restore optimal TB responsiveness as measured by Mtb specific IFN-γ response in HIV/TB patients. Improvement of Mtb-specific immune restoration should be the focus of future therapeutic strategies.
Blood transcriptomic profiles can potentially be used as biomarkers to discriminate the different clinical stages of tuberculosis in HIV-coinfected individuals and to monitor tuberculosis treatment responses in both HAART recipients and untreated individuals.
Identification of Mtb specific induced cytokine/chemokine host biomarkers could assist in developing novel diagnostic, prognostic and therapeutic tools for TB. Levels of IFN-γ, IL-2, IL-17, IL-10, IP-10 and MIP-1α were measured in supernatants of whole blood stimulated with Mtb specific fusion protein ESAT-6/CFP-10 using xMAP technology. The study groups were HIV positive TB patients (HIV(+)TB(+)), HIV negative TB patients (HIV(-)TB(+)), HIV positive tuberculin skin test positive (TST+) (HIV(+)TST(+)), HIV negative TST+ (HIV(-)TST(+)), and HIV(-)TST(-) individuals. Compared to HIV(-)TST(-), latent TB infection led to increased levels of IP-10, IFN-γ and IL-17, while levels of IL-2 and IP-10 were increased with active TB. Levels of IFN-γ, IL-17, MIP-1α, and IL-10 were increased in HIV(-)TST(+) individuals compared to HIV(-)TB(+) patients. HIV coinfection decreased the level of IFN-γ, IL-17, IP-10 and IL-2. After six months (M6) of anti-TB treatment (ATT) in HIV(-)TB(+) patients, IFN-γ, IL-10, and MIP-1α levels normalized. After M6 and M18 of ATT plus HAART in HIV(+)TB(+) patients, levels of MIP-1α and IL-10 normalized, while this was not the case for IFN-γ, IL-2, IL-17, and IP-10 levels. In HIV(+)TST(+) patients on HAART, levels of IFN-γ, IL-17, IL-10 and MIP-1α normalized, while no change in the levels of IL-2 and IP-10 were observed. In conclusion, the simultaneous measurement of IFN-γ, IL-17 and IP-10 may assist in diagnosing LTBI; IL-2 and IP-10 may assist in diagnosing active TB; while IFN-γ, IL-17, MIP-1α, and IL-10 levels could help to discriminate LTBI and active TB. In addition, IL-10 and MIP-1α levels could help to monitor responses to TB treatment and HAART.
A biosignature of 6 cytokines obtained after stimulation with four Mtb antigens has moderate potential as a diagnostic tool for pulmonary TB disease individuals and stimulated marker expression had no added value to unstimulated marker performance.
BackgroundValidation of previously identified candidate biomarkers and identification of additional candidate gene expression profiles to facilitate diagnosis of tuberculosis (TB) disease and monitoring treatment responses in the Ethiopian context is vital for improving TB control in the future.MethodsExpression levels of 105 immune-related genes were determined in the blood of 80 HIV-negative study participants composed of 40 active TB cases, 20 latent TB infected individuals with positive tuberculin skin test (TST+), and 20 healthy controls with no Mycobacterium tuberculosis (Mtb) infection (TST-), using focused gene expression profiling by dual-color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification assay. Gene expression levels were also measured six months after anti-TB treatment (ATT) and follow-up in 38 TB patients.ResultsThe expression of 15 host genes in TB patients could accurately discriminate between TB cases versus both TST+ and TST- controls at baseline and thus holds promise as biomarker signature to classify active TB disease versus latent TB infection in an Ethiopian setting. Interestingly, the expression levels of most genes that markedly discriminated between TB cases versus TST+ or TST- controls did not normalize following completion of ATT therapy at 6 months (except for PTPRCv1, FCGR1A, GZMB, CASP8 and GNLY) but had only fully normalized at the 18 months follow-up time point. Of note, network analysis comparing TB-associated host genes identified in the current HIV-negative TB cohort to TB-associated genes identified in our previously published Ethiopian HIV-positive TB cohort, revealed an over-representation of pattern recognition receptors including TLR2 and TLR4 in the HIV-positive cohort which was not seen in the HIV-negative cohort. Moreover, using ROC cutoff ≥ 0.80, FCGR1A was the only marker with classifying potential between TB infection and TB disease regardless of HIV status.ConclusionsOur data indicate that complex gene expression signatures are required to measure blood transcriptomic responses during and after successful ATT to fully diagnose TB disease and characterise drug-induced relapse-free cure, combining genes which resolve completely during the 6-months treatment phase of therapy with genes that only fully return to normal levels during the post-treatment resolution phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.