Ciplukan (Physalis angulata Linn.) is a Solanaceae family species and contains various active compounds with diverse therapeutic potential. The goal of this investigation was to see if the ethyl acetate fraction of ciplukan had an antifibrotic impact on liver fibrosis. The oral administration of 20% carbon tetrachloride (CCl 4 ) twice weekly for 8 weeks was used to cause liver fibrosis. Four weeks following fibrosis induction, ciplukan ethyl acetate fractions of 1.11 mg (CPL-1) and 2.22 mg (CPL-2) were given orally. As a positive control group, vitamin E was used. When compared to the negative control, the ethyl acetate portion of 2.22 mg (CPL-2) lowered serum alanine aminotransaminase levels (83.95 ± 27.675 vs 175.23 ± 5.641, p-value < 0.05). Microscopic histopathological changes based on the better Metavir score (CPL-2 vs. negative control = 1.25 ± 1.893 vs. 3.50 ± 0.577; p-value < 0.05) and Ishak score (CPL-2 vs. negative control = 1.50 ± 1.000 vs. 4.75 ± 0.957 p-value < 0.05) were demonstrated. Overall, in rat liver fibrosis induced by CCl 4 , these findings suggest that the ethyl acetate fraction of ciplukan has an antifibrotic effect.
Glucomannan (GM)—a polysaccharide generally extracted from the tuber of Amorphophallus konjac—has great potential as a filler–binder in direct compression, disintegrant in tablets, or gelling agent due to its strong hydrophilicity and extremely high viscosity. However, it has poor water resistance and low mechanical strength when used as an excipient in solid form. Several physical and chemical modifications have been carried out to improve these drawbacks. Chemical modification affects the characteristics of GM based on the DS. Carboxymethylation improves GM functionality by modifying its solubility and viscosity, which in turn allows it to bind water more efficiently and thus improve its elongation and gel homogeneity. Meanwhile, physical modification enhances functionality through combination with other excipients to improve mechanical properties and modify swelling ability and drug release from the matrix. This review discusses extraction of GM and its modification to enhance its applicability as an excipient in solid form. Modified GM is a novel excipient applicable in the pharmaceutical industry for direct compression, as a tablet disintegrant, a film-forming agent, and for encapsulation of macromolecular compounds or drug carriers for controlled release.
Many techniques can be used to improve drug solubility, which is the development of the liquisolid technique. This technique has a mechanism for increasing the surface area of the drug as well as wetting from the addition of non-volatile solvents resulting in a lower surface tension and contact angle, so the solubility and drug release very increases. Liquisolid tablets show a lower contact angle compared to the conventional tablets. The liquisolid technique approach is also promising because the process is simple in making low production costs and allows the manufacturing industry, including non-volatile solvents, fillers, dryers, and disintegrants. Liquisolid characterized by specific instruments such as powder x-ray diffraction (PXRD), Fourier transforms infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscope (SEM). Several liquisolid techniques are described in this review. The liquisolid technique is proven and able to change the physicochemical properties of active pharmaceutical ingredients, especially the solubility, drug release, and stability of the formula so that this technique can be a solution for class II and IV BCS pharmaceutical active drug classes.Keywords: Active Pharmaceutical Ingredients, Contact Angle, Solubility, Drug Release, Stability, Liquisolid Technique
The physicochemical properties of κ-carrageenan gels and their ester forms derived from different fatty-acid saturations were characterized and compared with those of native κ-carrageenan. Furthermore, stearic and oleic acids were used as the saturated and unsaturated fatty acids, respectively. Fourier-transform infrared (FTIR) spectra confirmed the introduction of the ester into the κ-carrageenan backbone. The thermogravimetric analysis showed that thermal stability increased along with the level of unsaturation, but there was a decrease in viscosity, hardness, and syneresis, which caused the consistency of the product to become more elastic. The results also showed that the ester form still has a swelling ability that is almost the same as that of κ-carrageenan. After being formulated into a gel dosage form, the product was successfully produced from the ester with unsaturated fatty acids, and it was more elastic than native κ-carrageenan and had good physical properties with spreadability that meets the requirements for topical preparations.
Investigation into the solid-state transition among drug polymorphs has been more intense lately. Many factors induce the transformation of polymorphs during manufacturing processes. Efavirenz (EFV), an AIDS therapy drug, has more than 23 polymorphs, but very little information has been reported on them. This study aimed to perform a characterisation of EFV polymorph properties and to predict the kinetics and mechanism of the polymorphic transformation of EFV during manufacturing processes. The bimorphism study was conducted by Differential Scanning Calorimetry (DSC) thermal analysis. The phase transition kinetics of the polymorphs was monitored by X-ray powder diffraction and the quantification of concomitant polymorphs was examined using Rietveld refinement with MAUD ver. 2.7 as a software aid. To predict the solid-state transition, correlation coefficients of solid-state kinetic models were fitted to the experimental data. The results show that Form I and Form II of EFV were thermodynamically shown to be monotropy related. By fitting the experimental data, it was found that isothermal treatment had the best model fit with the phase boundary reaction in the two-dimensional model (G2). Accordingly, by employing mechanical treatment (grinding), it was predicted that the transition mechanism is a second-ordered reaction (R2). The activation energy of the transition during isothermal treatment calculated by the Arrhenius plot was found to be 23.051 kJ mol À1 ; the half-lif of Form II at ambient temperature was 428.05 min (~7.1 h).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.