Efficient yet economic production of biofuel(s) using varied second-generation feedstock needs to be explored in the current scenario to cope up with global fuel demand. Hence, the present study was performed to reveal the use of cauliflower waste for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum NRRL B 527. The proximate analysis of cauliflower waste demonstrated to comprise 17.32% cellulose, 9.12% hemicellulose, and 5.94% lignin. Drying of cauliflower waste was carried out in the temperature range of 60-120 °C to investigate its effect on ABE production. The experimental drying data were simulated using moisture diffusion control model. The cauliflower waste dried at 80 °C showed maximum total sugar yield of 26.05 g L. Furthermore, the removal of phenolics, acetic acid, and total furans was found to be 90-97, 10-40, and 95-97%, respectively. Incidentally, maximum ABE titer obtained was 5.35 g L with 50% sugar utilization.
The porous membrane works upon sieving mechanism, where the separation and transport properties are dependent upon membrane morphology and porosity. This porosity and pore size are dependent upon membrane materials and formation parameters. Polysulfone (PSF) is one of the widely used membrane material due to its stability properties. Current work is targeted towards optimization of PSF based membranes by varying dope solution concentration and composition with the use of polyethylene glycol (PEG (MW6000)) as porogen in dope solution to enhance the transport rate and selectivity. An increase in PEG rejection with linear decrease in water flux and pore size was observed with the increase in dope solution concentration. Uniform membranes formation without any abnormal pore-size is observed from transport properties. The use of PEG as porogen leads to increased porosity due to leaching of Porogen during the phase inversion, which resulted in enhanced transport rate (85%). Further the formed membranes maintained pore size as seen from bubble point, rejection and pore size analysis. This resulted in maintenance of selectivity. Such increased transport with high selectivity is highly essential when applicability of membranes in industrial processes like process separation and waste treatment are considered. This would lead to large industrial benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.