Background: Cancer gene therapy using a nonviral vector is expected to be repeatable, safe, and inexpensive, and to have longterm effectiveness. Gene therapy using the E3 and C1 (E3C1) domain of developmental endothelial locus-1 (Del1) has been shown to improve prognosis in a mouse transplanted tumor model. Objective: In this study, we examined how this treatment affects angiogenesis in mouse transplanted tumors. Materials and methods: Mouse transplanted tumors (SCCKN human squamous carcinoma cell line) were injected locally with a nonviral plasmid vector encoding E3C1 weekly. Histochemical analysis of the transplanted tumors was then performed to assess the effects of E3C1 on prognosis. Results: All mice in the control group had died or reached an endpoint within 39 days. In contrast, one of ten mice in the E3C1 group had died by day 39, and eight of ten had died or reached an endpoint by day 120 (p < 0.01). Enhanced apoptosis in tumor stroma was seen on histochemical analyses, as was inhibited tumor angiogenesis in E3C1-treated mice. In addition, western blot analysis showed decreases in active Notch and HEY1 proteins. Conclusion: These findings indicate that cancer gene therapy using a nonviral vector encoding E3C1 significantly improved lifespan by inhibiting tumor angiogenesis. (REV INVEST CLIN. [AHEAD OF PRINT]
Background/Aim: Fibrosis is an essential process for wound healing, but excessive fibrosis, such as keloids and hypertrophic scars, can cause cosmetic and functional problems. These lesions are caused by abnormal deposition and shrinkage of collagen fibers. The light chain of FIX, a plasma protein essential for hemostasis, has the amino acid sequence CXDXXXXYXCXC in the EGF domain. Peptides containing this sequence inhibited stromal growth in a mouse transplant tumor model. In this study, the effect of the FIX light chain on wound healing was studied. Materials and Methods: A full-layer wound was made on the back of each mouse, and cDNA encoding the light chain of mouse FIX (F9-LC) in an expression vector was injected locally once each week using a non-viral vector. Histochemical analysis of the wound was then performed to assess the effects on wound healing. Moreover, the effect of F9-LC on fibroblasts was studied in vitro. Results: Macroscopic observation showed that wounds with forced expression of F9-LC appeared flatter and had fewer wrinkles than control wounds. Tissue collagen staining and immunostaining revealed that administration of F9-LC suppressed collagen 1 and 3 deposition and decreased α-smooth muscle actin expression. Electron microscopy revealed sparse and disorganized collagen fibers in the F9-LC-treated mice. In experiments using fibroblasts, addition of a recombinant protein of the FIX light chain disrupted the typical spindle shape and alignment of fibroblasts. Conclusion: F9-LC is a new candidate for use in treatments to regulate excessive fibrosis and contraction in wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.