In this research, there are two major sections for analysis: the characteristics of gasoline and diesel dual-fuel combustion and their application to operating load extension with high thermal efficiency and low emissions. All the experiments were completed using a single-cylinder compression ignition engine with 395 cc displacement. In the first section, the dual-fuel combustion modes were classified into three cases by their heat release rate shapes. Staying at 1500 r/min with a total value of 580 J of low heat for each cycle condition, the diesel injection timing was varied from before top dead center with a 6–46 °crank angle with 70% of gasoline fraction based on the low heating value. Among the modes were two suitable dual-fuel combustion modes for a premixed compression ignition. The first suitable mode shows multiple peaks in the heat release rate (mode 2) and the second suitable mode shows a single peak with a “bell-shaped” heat release rate (mode 3). These two dual-fuel combustion types showed a high gross indicated thermal efficiency of up to 46%. Based on the results in the first section, the practical application of dual-fuel premixed compression ignition combustion was investigated considering a high thermal efficiency and a high-load condition. At a 1500 r/min/gross indicated mean effective pressure of 6.5 bar, 48% of the gross indicated thermal efficiency was obtained by using dual-fuel premixed compression ignition combustion mode 3. This mode was typical of a “reactivity controlled compression ignition,” while the nitrogen oxides and the particulate matter emissions satisfied the EURO-6 regulation (0.21 g/kW h and 2.8 mg/m3, respectively). In addition, a high thermal efficiency (45%) with low maximum pressure rise rate, NOx (nitrogen oxides), and particulate matter emissions was obtained at 2000 r/min/gross indicated mean effective pressure 14 bar condition by the adjustment of dual-fuel premixed compression ignition combustion mode 2. As a result, this research contributes to the understanding and practical application of dual-fuel combustion for a light-duty compression ignition engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.