The complexity of ballistic protections increases with their efficiency. On this basis, an exclusively empirical approach is not adapted to optimise complex protection systems and the resort to numerical simulations is preferred if not mandatory. The present study proposes a methodology aiming at optimising complex multi-layer ballistic armours based on an experimental-numerical correlation. A multi-layer system is taken as example. A numerical model is first calibrated according to impact-on-monolithic-target test results. Once the model is validated, an optimisation process considering multi-layer configurations involving a sharp-nosed threat modifies the plates’ thicknesses in order to minimise the total mass while ensuring the system’s protective capacity in terms of residual velocity. The optimisation process shows that a single layer system is more efficient than a multi-layer one in the studied case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.