Small-scale biomass CHP (combined heat and power) plants are in demand for environmental reasons -particularly systems fueled by wood waste, which are simple to operate and require no maintenance while having high thermal efficiency similar to oil-fired units. A 55kWe Stirling engine CHP system, combined with a simplified biomass combustion process that uses pulverized wood powder has been developed to meet these requirements. Wood powder of less than 500 µm was mainly used in these tests, and a combustion chamber length of 3 m was applied. Under these conditions, the air ratio can be reduced to 1.1 without increasing CO emissions by less than 10 ppm, and with combustion efficiency of 99.9%. Under the same conditions, NOx emissions are estimated to be less than 120 ppm (on the basis of 6% O 2 ). Wood powder was confirmed to have excellent properties as a fuel for Stirling engines. The 55 kWe Stirling engine performance test was carried out to optimize the operating condition of wood powder burners. The status of Stirling engine operation at a full load with 55 kWe was stable, and start-up and shut -down operations were easy to perform. Operational status was evaluated as being excellent, except for an ash fouling problem in the Stirling engine heater tubes. Ash fouling characteristics were considered in the final stage of the demonstration test. This paper summarizes the wood powder combustion test and Stirling engine performance test. Furthermore, the ash fouling data is shown and the mechanism of ash fouling in heater tubes is discussed.
Low Temperature Co-fired Ceramics (LTCC) have excellent high-frequency characteristics and have widely been used for microwave electronic components. By lowering the sintering temperature of the ceramics used as insulating layers, LTCC was co-fired with a high-conductivity wiring conductor, such as Cu or Ag.
LTCC substrate has been expected as one of the most promising technologies to realize miniaturization of RF circuits in the field of wireless communications. There is no limitation to demand for further downsizing of RF circuits, suppression of electric loss and high mechanical strength of the substrate. However, conventional LTCC materials for substrates contain glass frit which causes defects, such as pores or cracks, and low mechanical strength.
In this work, we have developed a novel LTCC material system BaO-Al2O3-SiO2-MnO-TiO2, without any glass frits. The material was co-fired with cupper electrodes, which have low resistivity and show less diffusion than silver in LTCC, under a low-oxygen partial pressure atmosphere (mixture of N2 and H2) at 980°C. Thin layers (8μm) of the material showed high insulating resistivity and reliability due to few defects, such as pores, in LTCC. Its dielectric and mechanical properties were measured as 6.8 (low-εr), 350 at 3GHz (high-Q-value) and 341MPa (high mechanical strength) respectively.
This LTCC material will contribute to further miniaturizing of microwave applications and integration of passive elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.