We have previously reported that the lungs of patients with very severe chronic obstructive pulmonary disease (COPD) contain significantly higher numbers of alveolar macrophages than those of non-smokers or smokers. M1 and M2 macrophages represent pro- and anti-inflammatory populations, respectively. However, the roles of M1 and M2 alveolar macrophages in COPD remain unclear. Immunohistochemical techniques were used to examine CD163, CD204 and CD206, as M2 markers, expressed on alveolar macrophages in the lungs of patients with mild to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (mild) n = 11, II (moderate) n = 9, III (severe) n = 2, and IV (very severe) n = 16). Fifteen smokers and 10 non-smokers were also examined for comparison. There were significantly higher numbers of alveolar macrophages in COPD patients than in smokers and non-smokers. The numbers and percentages of CD163+, CD204+ or CD206+ alveolar macrophages in patients with COPD at GOLD stages III and IV were significantly higher than in those at GOLD stages I and II, and those in smokers and non-smokers. In patients with COPD, there was a significant negative correlation between the number of CD163+, CD204+ or CD206+ alveolar macrophages and the predicted forced expiratory volume in one second. Overexpression of CD163, CD204 and CD206 on lung alveolar macrophages may be involved in the pathogenesis of COPD.
The newly characterized cytokine IL-38 (IL-1F10) belongs to the IL-1 family of cytokines. Previous work has demonstrated that IL-38 inhibited Candida albicans-induced IL-17 production from peripheral blood mononuclear cells. However, it is still unclear whether IL-38 is an inflammatory or an anti-inflammatory cytokine. We generated anti-human IL-38 monoclonal antibodies in order to perform immunohistochemical staining and an enzyme-linked immunosorbent assay. While human recombinant IL-38 protein was not cleaved by recombinant caspase-1, chymase, or PR3 in vitro, overexpression of IL-38 cDNA produced a soluble form of IL-38 protein. Furthermore, immunohistochemical analysis showed that synovial tissues obtained from RA patients strongly expressed IL-38 protein. To investigate the biological role of IL-38, C57BL/6 IL-38 gene-deficient (−/−) mice were used in an autoantibody-induced rheumatoid arthritis (RA) mouse model. As compared with control mice, IL-38 (−/−) mice showed greater disease severity, accompanied by higher IL-1β and IL-6 gene expression in the joints. Therefore, IL-38 acts as an inhibitor of the pathogenesis of autoantibody-induced arthritis in mice and may have a role in the development or progression of RA in humans.
IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases including pulmonary infection, pulmonary fibrosis, lung injury and chronic obstructive pulmonary disease (COPD). However, it is unknown whether IL-18 plays any role in the pathogenesis of asthma. We hypothesized that overexpression of mature IL-18 protein in the lungs may exacerbate disease activities of asthma. We established lung-specific IL-18 transgenic mice on a Balb/c genetic background. Female mice sensitized– and challenged– with antigen (ovalbumin) were used as a mouse asthma model. Pulmonary inflammation and emphysema were not observed in the lungs of naïve transgenic mice. However, airway hyperresponsiveness and airway inflammatory cells accompanied with CD4+ T cells, CD8+ T cells, eosinophils, neutrophils, and macrophages were significantly increased in ovalbumin-sensitized and challenged transgenic mice, as compared to wild type Balb/c mice. We also demonstrate that IL-18 induces IFN-γ, IL-13, and eotaxin in the lungs of ovalbumin-sensitized and challenged transgenic mice along with an increase in IL-13 producing CD4+ T cells. Treatment with anti-CD4 monoclonal antibody or deletion of the IL-13 gene improves ovalbumin-induced airway hyperresponsiveness and reduces airway inflammatory cells in transgenic mice. Overexpressing the IL-18 protein in the lungs induces type 1 and type 2 cytokines and airway inflammation, and results in increasing airway hyperresponsiveness via CD4+ T cells and IL-13 in asthma.
Airway, but not circulating, Tregs are decreased in mild atopic asthmatics, and are negatively correlated to an increase of airway eosinophilic inflammation and AHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.