Nicotinamide inhibited intestinal Pi absorption in a rat model of CRF, at least in part by inhibiting the expression of NaPi-2b, and appeared to protect against the deterioration of renal function.
BackgroundF-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising modality for detecting active lesions of cardiac sarcoidosis (CS). However, determining whether 18F-FDG uptake in the myocardium is physiological is challenging due to metabolic shift in myocardial cells. Although methods for inhibiting physiological myocardial 18F-FDG uptake have been proposed, no standard methods exist. This study therefore aimed to compare the effect of an 18-h fast (long fasting (LF)) with heparin loading plus a 12-h fast (HEP) before 18F-FDG PET scan.MethodsWe analyzed the effects of LF and HEP on the inhibition of physiological myocardial 18F-FDG uptake in healthy subjects (18 in HEP and 19 in LF) and in patients with known or suspected CS (96 in HEP and 69 in LF). In CS, the lower uptake of 18F-FDG in the myocardium was evaluated. A visual four-point scale was used to assess myocardial 18F-FDG uptake in comparison with hepatic uptake (1 lower, 2 similar, 3 somewhat higher, 4 noticeably higher).ResultsMyocardial 18F-FDG uptake was 1.68 ± 1.06 in LF and 3.17 ± 1.16 in HEP in healthy subjects (p < 0.0001), whereas it was 1.48 ± 0.99 in LF and 2.48 ± 1.33 in HEP in CS patients (p < 0.0001). Logistic regression and regression trees revealed the LF was the most effective in inhibiting myocardial 18F-FDG uptake. In addition, serum free fatty acid levels on intravenous 18F-FDG injection were a possible biomarker.ConclusionsLF is effective in inhibiting myocardial 18F-FDG uptake, and consequently, it could be useful for evaluating active lesions of CS in 18F-FDG PET images.
PurposeThe aim of this multi-center study was to assess the diagnostic capability of visual assessment in L-methyl-11C-methionine positron emission tomography (MET-PET) for differentiating a recurrent brain tumor from radiation-induced necrosis after radiotherapy, and to compare it to the accuracy of quantitative analysis.MethodsA total of 73 brain lesions (glioma: 31, brain metastasis: 42) in 70 patients who underwent MET-PET were included in this study. Visual analysis was performed by comparison of MET uptake in the brain lesion with MET uptake in one of four regions (around the lesion, contralateral frontal lobe, contralateral area, and contralateral cerebellar cortex). The concordance rate and logistic regression analysis were used to evaluate the diagnostic ability of visual assessment. Receiver-operating characteristic curve analysis was used to compare visual assessment with quantitative assessment based on the lesion-to-normal (L/N) ratio of MET uptake.ResultsInterobserver and intraobserver κ-values were highest at 0.657 and 0.714, respectively, when assessing MET uptake in the lesion compared to that in the contralateral cerebellar cortex. Logistic regression analysis showed that assessing MET uptake in the contralateral cerebellar cortex with brain metastasis was significantly related to the final result. The highest area under the receiver-operating characteristic curve (AUC) with visual assessment for brain metastasis was 0.85, showing no statistically significant difference with L/Nmax of the contralateral brain (AUC = 0.89) or with L/Nmean of the contralateral cerebellar cortex (AUC = 0.89), which were the areas that were the highest in the quantitative assessment. For evaluation of gliomas, no specific candidate was confirmed among the four areas used in visual assessment, and no significant difference was seen between visual assessment and quantitative assessment.ConclusionThe visual assessment showed no significant difference from quantitative assessment of MET-PET with a relevant cut-off value for the differentiation of recurrent brain tumors from radiation-induced necrosis.
FDG-PET/CT is a potentially powerful tool for the early diagnosis of RPC, especially in patients without easily biopsied organ involvement. This modality also facilitates evaluation of disease extent and disease activity during treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.