Poly(2-methoxyethyl acrylate) (PMEA) and poly(ethylene oxide) (PEO) have protein-antifouling properties and blood compatibility. ABA triblock copolymers (PMEAl-PEO11340-PMEAm (MEOMn; n is average value of l and m)) were prepared using single-electron transfer-living radical polymerization (SET-LRP) using a bifunctional PEO macroinitiator. Two types of MEOMn composed of PMEA blocks with degrees of polymerization (DP = n) of 85 and 777 were prepared using the same PEO macroinitiator. MEOMn formed flower micelles with a hydrophobic PMEA (A) core and hydrophilic PEO (B) loop shells in diluted water with a similar appearance to petals. The hydrodynamic radii of MEOM85 and MEOM777 were 151 and 108 nm, respectively. The PMEA block with a large DP formed a tightly packed core. The aggregation number (Nagg) of the PMEA block in a single flower micelle for MEOM85 and MEOM777 was 156 and 164, respectively, which were estimated using a light scattering technique. The critical micelle concentrations (CMCs) for MEOM85 and MEOM777 were 0.01 and 0.002 g/L, respectively, as determined by the light scattering intensity and fluorescence probe techniques. The size, Nagg, and CMC for MEOM85 and MEOM777 were almost the same independent of hydrophobic DP of the PMEA block.
An amphiphilic diblock copolymer (PChM-PNIPAM), composed of poly(cholesteryl 6-methacryloyloxy hexanoate) (PChM) and poly(N-isopropyl acrylamide) (PNIPAM) blocks, was prepared via reversible addition–fragmentation chain transfer radical polymerization. The PChM and PNIPAM blocks exhibited liquid crystalline behavior and a lower critical solution temperature (LCST), respectively. PChM-PNIPAM formed water-soluble polymer micelles in water below the LCST because of hydrophobic interactions of the PChM blocks. The PChM and PNIPAM blocks formed the core and hydrophilic shell of the micelles, respectively. With increasing temperature, the molecular motion of the pendant cholesteryl groups increased, and a liquid crystalline phase transition occurred from an amorphous state in the core. With further increases in temperature, the PNIPAM block in the shell exhibited the LCST and dehydrated. Hydrophobic interactions of the PNIPAM shells resulted in inter-micellar aggregation above the LCST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.