The objective here was to review the effects of polyvinylpyrrolidone (PVP) upon sperm function and embryonic development in humans. PVP has been used successfully in intracytoplasmic sperm injection (ICSI) to facilitate the handling and immobilization of sperm for both domestic animals and humans. In our previous reports, PVP solution exists locally in embryos injected during the early developmental period, and also exerts influence over the developmental capacity of such embryos. In other reports, PVP causes significant damage to sperm membranes that can be detected by transmission electron microscopy, and has been associated with chromosomal abnormalities in pregnancy derived from ICSI embryos. In some Japanese clinics, PVP-free media has been used for sperm immobilization in order to optimise safety. Consequently, it is strongly suggested that the success rate of fertilization and clinical pregnancy could be improved by using PVP-free solution for human ICSI. In conclusion, our interpretation of the available data is to perform ICSI without PVP or select a lower concentration of PVP solution in order to reduce safety for pregnancy and children born via ICSI.
Intracytoplasmic sperm injection (ICSI) has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS) produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF) and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.