Purpose Positive margins dominate clinical outcomes after surgical resections in most solid cancer types including head and neck squamous cell carcinoma. Unfortunately, surgeons remove cancer in the same manner they have for a century with complete dependence on subjective tissue changes to identify cancer in the operating room. To effect change, we hypothesize that epidermal growth factor receptor (EGFR) can be targeted for safe and specific real-time localization of cancer. Experimental design A dose escalation study of cetuximab conjugated to IRDye800 was performed in patients (n=12) undergoing surgical resection of squamous cell carcinoma arising in the head and neck. Safety and pharmacokinetic data were obtained out to 30 days post-infusion. Multi-instrument fluorescence imaging was performed in the operating room and in surgical pathology. Results There were no grade 2 or higher adverse events attributable to cetuximab-IRDye800. Fluorescence imaging with an intraoperative, wide-field device successfully differentiated tumor from normal tissue during resection with an average tumor-to-background ratio of 5.2 in the highest dose range. Optical imaging identified opportunity for more precise identification of tumor during the surgical procedure and during the pathological analysis of tissues ex-vivo. Fluorescence levels positively correlated with EGFR levels. Conclusion We demonstrate for the first time that commercially available antibodies can be fluorescently labeled and safely administered to humans to identify cancer with sub-millimeter resolution, which has the potential to improve outcomes in clinical oncology.
BackgroundExtracorporeal membrane oxygenation (ECMO) is a life-saving support system used in neonates and young children with severe cardiorespiratory failure. Although ECMO has reduced mortality in these critically-ill patients, almost all patients treated with ECMO develop a systemic inflammatory response syndrome (SIRS) characterized by a ‘cytokine storm’, leukocyte activation, and multisystem organ dysfunction. We used a neonatal porcine model of ECMO to investigate whether rising plasma concentrations of inflammatory cytokines during ECMO reflect de novo synthesis of these mediators in inflamed tissues, and therefore, can be used to assess the severity of ECMO-related SIRS.MethodsThree-week-old previously-healthy piglets were subjected to venoarterial ECMO for up to 8 hours. SIRS was assessed by histopathological analysis, measurement of neutrophil activation (flow cytometry), plasma cytokine concentrations (enzyme immunoassays), and tissue expression of inflammatory genes (polymerase chain reaction/western blots). Mast cell degranulation was investigated by measurement of plasma tryptase activity.ResultsPorcine neonatal ECMO was associated with systemic inflammatory changes similar to those seen in human neonates. TNF-α and interleukin-8 (IL-8) concentrations rose rapidly during the first 2 hours of ECMO, faster than the tissue expression of these cytokines. ECMO was associated with increased plasma mast cell tryptase activity, indicating that increased plasma concentrations of inflammatory cytokines during ECMO may result from mast cell degranulation and associated release of preformed cytokines stored in mast cells.ConclusionsTNF-α and IL-8 concentrations rose faster in plasma than in the peripheral tissues during ECMO, indicating that rising plasma levels of these cytokines immediately following the initiation of ECMO may not reflect increasing tissue synthesis of these cytokines. Mobilization of preformed cellular stores of inflammatory cytokines such as in mucosal mast cells may play an important pathophysiological role in ECMO-related SIRS.
Purpose Comprehensive cervical lymphadenectomy can be associated with significant morbidity and poor quality of life. This study evaluated the sensitivity and specificity of cetuximab-IRDye800CW to identify metastatic disease in patients with head and neck cancer. Experimental Design Consenting patients scheduled for curative resection were enrolled in a clinical trial to evaluate the safety and specificity of cetuximab-IRDye800CW. Patients (n=12) received escalating doses of the study drug. Where indicated, cervical lymphadenectomy accompanied primary tumor resection, which occurred 3–7days following intravenous infusion of cetuximab-IRDye800CW. All 471 dissected lymph nodes were imaged with a closed-field, near-infrared imaging device during gross processing of the fresh specimens. Intraoperative imaging of exposed neck levels was performed with an open-field fluorescence-imaging device. Blinded assessments of the fluorescence data were compared to histopathology to calculate sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). Results Of the 35 nodes diagnosed pathologically positive, 34 were correctly identified with fluorescence imaging, yielding a sensitivity of 97.2%. Of the 435 pathologically negative nodes, 401 were correctly assessed using fluorescence imaging, yielding a specificity of 92.7%. The NPV was determined to be 99.7%, and the PPV was 50.7%. When 37 fluorescently false-positive nodes were sectioned deeper (1mm) into their respective blocks, metastatic cancer was found in 8.1% of the re-cut nodal specimens, which altered staging in two of those cases. Conclusions Fluorescence imaging of lymph nodes after systemic cetuximab-IRDye800CW administration demonstrated high sensitivity and was capable of identifying additional positive nodes on deep sectioning.
Anti-EGFR (epidermal growth factor receptor) antibody based treatment strategies have been successfully implemented in head and neck squamous cell carcinoma (HNSCC). Unfortunately, predicting an accurate and reliable therapeutic response remains a challenge on a per-patient basis. Although significant efforts have been invested in understanding EGFR-mediated changes in cell signaling related to treatment efficacy, the delivery and histological localization in (peri-)tumoral compartments of antibody-based therapeutics in human tumors is poorly understood nor ever made visible. In this first in-human study of a systemically administered near-infrared (NIR) fluorescently labeled therapeutic antibody, cetuximab-IRDye800CW (2.5 mg/m2, 25 mg/m2, and 62.5 mg/m2), we show that by optical molecular imaging (i.e. denominated as In vivo Fluorescence Immunohistochemistry) we were able to evaluate localization of fluorescently labeled cetuximab. Clearly, optical molecular imaging with fluorescently labeled antibodies correlating morphological (peri-)tumoral characteristics to levels of antibody delivery, may improve treatment paradigms based on understanding true tumoral antibody delivery.
Background Complete surgical resection of breast cancer is a powerful determinant of patient outcome, and failure to achieve negative margins results in reoperation in between 30% and 60% of patients. We hypothesize that repurposing Food and Drug Administration approved antibodies as tumor-targeting diagnostic molecules can function as optical contrast agents to identify the boundaries of malignant tissue intraoperatively. Materials and methods The monoclonal antibodies bevacizumab, cetuximab, panitumumab, trastuzumab, and tocilizumab were covalently linked to a near-infrared fluorescence probe (IRDye800CW) and in vitro binding assays were performed to confirm ligand-specific binding. Nude mice bearing human breast cancer flank tumors were intravenously injected with the antibody-IRDye800 bioconjugates and imaged over time. Tumor resections were performed using the SPY and Pearl Impulse systems, and the presence or absence of tumor was confirmed by conventional and fluorescence histology. Results Tumor was distinguishable from normal tissue using both SPY and Pearl systems, with both platforms being able to detect tumor as small as 0.5 mg. Serial surgical resections demonstrated that real-time fluorescence can differentiate subclinical segments of disease. Pathologic examination of samples by conventional and optical histology using the Odyssey scanner confirmed that the bioconjugates were specific for tumor cells and allowed accurate differentiation of malignant areas from normal tissue. Conclusions Human breast cancer tumors can be imaged in vivo with multiple optical imaging platforms using near-infrared fluorescently labeled antibodies. These data support additional preclinical investigations for improving the surgical resection of malignancies with the goal of eventual clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.