Antioxidant capacity and contents of total phenolics, anthocyanins, flavonoids, and vitamin C were evaluated in 218 genotypes from 15 peach and nectarine breeding progenies. Significant differences were found among progenies on the fruit antioxidant profile, corroborated by the high contribution showed by cross to the phenotypic variance of each phytochemical trait analyzed (16-45%). Phytochemical profile varied depending on peach/nectarine and yellow/white flesh color qualitative traits. On the other hand, no significant effect of year was found on the bioactive profile of peaches and nectarines. Antioxidant capacity was linearly correlated to total phenolic content, but correlation varied depending on the progeny. No correlation was found for vitamin C versus any other phytochemical trait. The results suggest the importance of genetic background on the antioxidant profile of peaches and nectarines and stress its relevance for the ultimate objective of this work: selecting new peach and nectarine genotypes rich in bioactive compounds to benefit consumer's health.
Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 m, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.
An understanding of the mechanisms that determine plant response to reduced water availability is essential to improve water-use efficiency (WUE) of stone fruit crops. The physiological, biochemical and molecular drought responses of four Prunus rootstocks (GF 677, Cadaman, ROOTPAC 20 and ROOTPAC(®) R) budded with 'Catherina' peach cultivar were studied. Trees were grown in 15-l containers and subjected to a progressive water stress for 26 days, monitoring soil moisture content by time domain reflectometry. Photosynthetic and gas exchange parameters were determined. Root and leaf soluble sugars and proline content were also measured. At the end of the experiment, stressed plants showed lower net photosynthesis rate, stomatal conductance and transpiration rate, and higher intrinsic leaf WUE (AN/gs). Soluble sugars and proline concentration changes were observed, in both root and leaf tissues, especially in an advanced state of stress. The accumulation of proline in roots and leaves with drought stress was related to the decrease in osmotic potential and increase in WUE, whereas the accumulation of sorbitol in leaves, raffinose in roots and proline in both tissues was related only to the increase in the WUE. Owing to the putative role of raffinose and proline as antioxidants and their low concentration, they could be ameliorating deleterious effects of drought-induced oxidative stress by protecting membranes and enzymes rather than acting as active osmolytes. Higher expression of P5SC gene in roots was also consistent with proline accumulation in the tolerant genotype GF 677. These results indicate that accumulation of sorbitol, raffinose and proline in different tissues and/or the increase in P5SC expression could be used as markers of drought tolerance in peach cultivars grafted on Prunus rootstocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.