Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Previous studies have evaluated the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. The present study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky conditions. A 0.04-K (k = 2; 95% confidence) radiometric calibration requirement baseline is derived using a spectral fingerprinting method. It is also demonstrated that the requirement is spectrally dependent and that some spectral regions can be relaxed as a result of the hyperspectral nature of the CLARREO instrument. Relaxing the requirement to 0.06 K (k = 2) is discussed further based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in the time to detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations.
Cloud response to Earth’s changing climate is one of the largest sources of uncertainty among global climate model (GCM) projections. Two of the largest sources of uncertainty are the spread in equilibrium climate sensitivity (ECS) and uncertainty in radiative forcing due to uncertainty in the aerosol indirect effect. Satellite instruments with sufficient accuracy and on-orbit stability to detect climate change–scale trends in cloud properties will improve confidence in the understanding of the relationship between observed climate change and cloud property trends, thus providing information to better constrain ECS and radiative forcing. This study applies a climate change uncertainty framework to quantify the impact of measurement uncertainty on trend detection times for cloud fraction, effective temperature, optical thickness, and water cloud effective radius. Although GCMs generally agree that the total cloud feedback is positive, disagreement remains on its magnitude. With the climate uncertainty framework, it is demonstrated how stringent measurement uncertainty requirements for reflected solar and infrared satellite measurements enable improved constraint of SW and LW cloud feedbacks and the ECS by significantly reducing trend uncertainties for cloud fraction, optical thickness, and effective temperature. The authors also demonstrate improved constraint on uncertainty in the aerosol indirect effect by reducing water cloud effective radius trend uncertainty.
Atmospheric scattering and surface polarization affect radiance measurements of polarization-sensitive instruments on orbit. Neglecting the polarization effects may lead to an inaccurate radiance/reflectance determination and underestimated radiance/reflectance uncertainty. Of the two instruments, CERES and VIIRS, slated to be intercalibrated by the CLARREO Pathfinder (CPF), the latter is known to be sensitive to polarization. The Pathfinder mission is tasked with accurately determining the uncertainty contribution of polarization and will provide the benchmark for the determination of the polarization correction factor for polarization-sensitive instruments. In this article, we show the formalism necessary to correct the reflectance for sensitivity to polarization after the CLARREO Pathfinder/VIIRS intercalibration, as well as the associated polarization uncertainty contribution to the overall intercalibrated reflectance error. To illustrate its usage, the formalism is applied to three dominant scene types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.