INTRODUCCIÓN Estudiamos el siguiente sistema disipativodonde Q es un abierto acotado de ]Rn con frontera d Q suave.Este sistema modela el movimiento transversal de una placa de material viscoelástica presa en la frontera dQ, sin movimiento longitudinal. u (x, t) representa la posición de la placa en el instante t y~2,~, \7 son los operadores Biarmónico, Laplaciano y Gradiente respectivamente.
In this article, we prove that initial value problem associated to the non homogeneous third order equation in periodic Sobolev spaces has a local so- lution in [0, T ] with T > 0, and the solution has continuous dependence with respect to the initial data and the non homogeneous part of the problem. We do this in a intuitive way using Fourier theory and introducing a Co - Semi- group inspired by the work of Iorio [1] and Santiago [6]. Also, we prove the uniqueness solution of the homogeneous third order equa- tion, using its conservative property, inspired by the work of Iorio [1] and Santiago [7]. Finally, we study its generalization to n-th order equation.
En este artículo demostramos que existe una única solución débil de una ecuación de onda no-lineal. Probamos la unicidad de solución utilizando el método de Visik - Ladyshenkaia. También, usando el Lema de diferencias de Nakao, probamos el decaimiento exponencial de la energía asociada al sistema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.