The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.
Zoosporic parasites (i.e. fungi and fungi-like aquatic microorganisms) constitute important drivers of natural populations, causing severe host mortality. Economic impacts of parasitic diseases are notable in the microalgae biotech industry, affecting production of food ingredients, biofuels, pharma- and nutraceuticals. While scientific research on this topic is gaining traction by increasing studies elucidating the functional role of zoosporic parasites in natural ecosystems, we are currently lacking integrated and interdisciplinary efforts for effectively detecting and controlling parasites in the microalgae industry. To fill this gap we propose to establish an innovative, dynamic European network connecting scientists, industries and stakeholders to optimize information exchange, equalize access to resources and to develop a joint research agenda. ParAqua aims at compiling and making available all information on the occurrence of zoosporic parasites and their relationship with hosts, elucidate drivers and evaluate impacts of parasitism in natural and man-made aquatic environments. We aim to implement new tools for monitoring and prevention of infections, and to create protocols and a Decision Support Tool for detecting and controlling parasites in the microalgae biotech production. Applied knowledge on zoosporic parasites can feed back from industry to ecology, and we therefore will explore whether the developed tools can be applied for monitoring lakes and reservoirs. Short-Term Scientific Missions and Training Schools will be organised specifically for early stage scientists and managers – with a specific focus on ITC – with the aim to share and integrate both scientific and applied expertise and increase exchange between basic and applied researchers and stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.