Glass fabric–reinforced composites are the main insulating material components of the secondary barrier of cargo containment systems (CCSs), because they prevent liquefied natural gas (LNG) leakage during transport. Nevertheless, it is difficult to evaluate the material performance of glass fabric–reinforced composites at cryogenic temperatures (−163 °C) because it takes approximately 7 days to prepare the test specimens and because the slip-based test frequently fails. Although glass fabric–reinforced composites for the secondary barrier of LNG CCSs show various structural vulnerabilities, enhancing their material performance is significantly limited owing to the reasons mentioned above. This study evaluated the structural vulnerabilities and failure characteristics of glass fabric–reinforced composites by using the slip-prevention test method to determine the level difference and adhesive vacancies. The failure surface and the thermal expansion of the composites were also observed, to analyze their mechanical characteristics. By adopting our proposed test procedure, the failure rate of the experiment decreased by approximately 80%, and the sample preparation time for manufacturing was significantly shortened, to 1 day.
The most important technical issue in the shipbuilding industry regarding liquefied natural gas (LNG) carrier cargo containment systems (CCS) is securing the structural reliability of the primary barrier, which is in direct contact with the LNG. Fracture of the primary barrier by the hydrodynamic load of the LNG CCS may lead to disasters because it is difficult to implement immediate safety measures in the marine environment, unlike on land. Hence, structural reliability of the LNG membrane is the most critical issue in LNG carrier CCSs, where thin and corrugated 304L stainless steel is often used as the primary barrier to prevent repeated thermal deformation from the temperature difference during loading (−163 °C) and unloading (20 °C) of the LNG. However, plastic deformation of the 1.2 mm-thick corrugated membrane of the LNG CCS has been reported continuously owing to its vulnerability to cryogenic hydrodynamic loads. In the present study, we conducted a parametric analysis to investigate the effects of the corrugation shape as a preliminary study of the primary barrier. Finite element analysis was conducted with a simplified plate to focus on the effects of corrugation. Furthermore, a two-step validation was conducted using the above experimental results to ensure reliability of the structural analysis. The results show that optimizing the corrugation shape could ensure better structural safety than the conventional design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.