Foot-and-mouth disease (FMD) is a disease of worldwide economic importance, and vaccines play an important role in preventing FMDV outbreaks. However, new control strategies are still needed since FMDV outbreaks still occur in some disease-free countries. Currently, interferon (IFN)-based strategies have been demonstrated to be an efficient biotherapeutic option against FMDV; however, interferon omega (IFN-ω) has not yet been assessed in this capacity. Thus, this study evaluated the antiviral activity of porcine IFN omega 7 (PoIFN-ω7) against FMDV. After the PoIFN-ω7 was expressed and purified, cell proliferation assays and quantitative real-time reverse transciption-polymerase chain reaction were used to evaluate the effective anti-cytopathic concentration of PoIFN-ω7 and its effectiveness pre- and post-infection with FMDV in swine kidney cells (IBRS-2). Results showed the rHis-PoIFN-ω7 fusion protein was considerably expressed using Escherichia coli BL21 (DE3) strain, and the recombinant protein exhibited significant in vitro protection against FMDV, including two strains belonging to type O and A FMDV, respectively. In addition, PoIFN-ω7 upregulated the transcription of Mx1, ISG15, OAS1, and PKR genes. These findings indicated that IFN-ω has the potential for serving as a useful therapeutic agent to prevent FMDV or other viral outbreaks in pigs.
Despite the application of nerve grafts and considerable microsurgical innovations, the functional recovery across a long peripheral nerve gap is generally partial and unsatisfactory. Thus, additional strategies are required to improve nerve regeneration across long nerve gaps. Hydrogen possesses antioxidant and anti-apoptotic properties, which could be neuroprotective in the treatment of peripheral nerve injury; however, such a possibility has not been experimentally tested . The aim of the present study was to investigate the effectiveness of hydrogen-rich saline in promoting nerve regeneration after 10-mm sciatic nerve autografting in rats. The rats were randomly divided into two groups and intraperitoneally administered a daily regimen of 5 ml/kg hydrogen-rich or normal saline. Axonal regeneration and functional recovery were assessed through a combination of behavioral analyses, electrophysiological evaluations, Fluoro-Gold™ retrograde tracings and histomorphological observations. The data showed that rats receiving hydrogen-rich saline achieved better axonal regeneration and functional recovery than those receiving normal saline. These findings indicated that hydrogen-rich saline promotes nerve regeneration across long gaps, suggesting that hydrogen-rich saline could be used as a neuroprotective agent for peripheral nerve injury therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.