Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Hepatocellular carcinoma (HCC) is frequently metastatic once diagnosed and less likely to respond to curative surgery, emphasizing the need for the development of more sensitive and effective diagnostic and therapeutic strategies. Epithelial cell adhesion molecule (EpCAM) is deemed as the biomarker of cancer stem cells (CSCs), which are mainly responsible for the recurrence, metastasis and prognosis of HCC. In this study, we discuss the use of mitoxantrone (MX), an antitumor drug and a photosensitizer, for designing upconversion nanoparticle-based micelles grafted with the anti-EpCAM antibody, for dual-modality magnetic resonance/upconversion luminescence (MR/UCL)-guided synergetic chemotherapy and photodynamic therapy (PDT). The obtained micelles exhibit good biocompatibility, high specificity to HCC cells and superior fluorescent/magnetic properties in vitro. In vivo results demonstrate that the targeted micelles exhibited much better MR/UCL imaging qualities compared to the nontargeted micelles after the intravenous injection. More importantly, PEGylated UCNP micelles loaded with MX and grafted with anti-EpCAM antibody, denoted as anti-EpCAM-UPGs-MX, showcased the most effective synergetic antitumor efficacy compared with other treatment groups both in vitro and vivo. The remarkable antitumor effect, coupled with superior simultaneous dual-modality MR/UCL imaging as well as good biocompatibility and negligible toxicity, makes the UPG micelles promising for future translational research in HCC diagnosis and therapy.
BackgroundPancreatic cancer remains the leading cause of cancer-related deaths, the existence of cancer stem cells and lack of highly efficient early detection may account for the poor survival rate. Gadolinium ion-doped upconversion nanoparticles (UCNPs) provide opportunities for combining fluorescent with magnetic resonance imaging, and they can improve the diagnostic efficacy of early pancreatic cancer. In addition, as one transmembrane glycoprotein overexpressed on the pancreatic cancer stem cells, CD326 may act as a promising target. In this study, we developed a facile strategy for developing anti-human CD326-grafted UCNPs-based micelles and performed the corresponding characterizations. After conducting in vitro and vivo toxicology experiments, we also examined the active targeting capability of the micelles upon dual-mode imaging in vivo.ResultsWe found that the micelles owned superior imaging properties and long-time stability based on multiple characterizations. By performing in vitro and vivo toxicology assay, the micelles had good biocompatibility. We observed more cellular uptake of the micelles with the help of anti-human CD326 grafted onto the micelles. Furthermore, we successfully concluded that CD326-conjugated micelles endowed promising active targeting ability by conducting dual-mode imaging in human pancreatic cancer xenograft mouse model.ConclusionsWith good biocompatibility and excellent imaging properties of the micelles, our results uncover efficient active homing of those micelles after intravenous injection, and undoubtedly demonstrate the as-obtained micelles holds great potential for early pancreatic cancer diagnosis in the future and would pave the way for the following biomedical applications.
Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90 + LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90 + LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90 + LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90 + LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90 + LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90 + LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.