5-Fluorouracil (5-FU) remains the first-line treatment for colorectal cancer (CRC). Although 5-FU initially de-bulks the tumor mass, recurrence after chemotherapy is the barrier to effective clinical outcomes for CRC patients. Here, we demonstrate that p53 promotes WNT3 transcription, leading to activation of the WNT/β-catenin pathway in ApcMin/+/Lgr5EGFP mice, CRC patient-derived tumor organoids (PDTOs) and patient-derived tumor cells (PDCs). Through this regulation, 5-FU induces activation and enrichment of cancer stem cells (CSCs) in the residual tumors, contributing to recurrence after treatment. Combinatorial treatment of a WNT inhibitor and 5-FU effectively suppresses the CSCs and reduces tumor regrowth after discontinuation of treatment. These findings indicate p53 as a critical mediator of 5-FU-induced CSC activation via the WNT/β-catenin signaling pathway and highlight the significance of combinatorial treatment of WNT inhibitor and 5-FU as a compelling therapeutic strategy to improve the poor outcomes of current 5-FU-based therapies for CRC patients.
Both the Wnt/β-catenin and Ras pathways are aberrantly activated in most human colorectal cancers (CRCs) and interact cooperatively in tumor promotion. Inhibition of these signaling may therefore be an ideal strategy for treating CRC. We identified KY1220, a compound that destabilizes both β-catenin and Ras, via targeting the Wnt/β-catenin pathway, and synthesized its derivative KYA1797K. KYA1797K bound directly to the regulators of G-protein signaling domain of axin, initiating β-catenin and Ras degradation through enhancement of the β-catenin destruction complex activating GSK3β. KYA1797K effectively suppressed the growth of CRCs harboring APC and KRAS mutations, as shown by various in vitro studies and by in vivo studies using xenograft and transgenic mouse models of tumors induced by APC and KRAS mutations. Destabilization of both β-catenin and Ras via targeting axin is a potential therapeutic strategy for treatment of CRC and other type cancers activated Wnt/β-catenin and Ras pathways.
Kang et al. show that genetic or pharmacological inactivation of the enzyme phospholipase D1 (PLD1) disrupts colitis-associated intestinal tumorigenesis by suppressing the self-renewal capacity of colon cancer stem cells.
HIF-1α overexpression has been demonstrated in hypoxic cancer cells. NNC 55-0396, a T-type Ca(2+) channel inhibitor, inhibited HIF-1α expression via both proteasomal degradation and protein synthesis pathways. T-type Ca(2+) channel inhibitors block angiogenesis by suppressing HIF-1α stability and synthesis. NNC 55-0396 could be a potential therapeutic drug candidate for cancer treatment.
APC (80-90%) and K-Ras (40-50%) mutations frequently occur in human colorectal cancer (CRC) and these mutations cooperatively accelerate tumorigenesis including metastasis. In addition, both β-catenin and Ras levels are highly increased in CRC, especially in metastatic CRC (mCRC). Therefore, targeting both the Wnt/β-catenin and Ras pathways could be an ideal therapeutic approach for treating mCRC patients. In this study, we characterized the roles of KY1022, a small molecule that destabilizes both β-catenin and Ras via targeting the Wnt/β-catenin pathway, in inhibiting the cellular events, including EMT, an initial process of metastasis, and apoptosis. As shown by in vitro and in vivo studies using APCMin/+/K-RasG12DLA2 mice, KY1022 effectively suppressed the development of mCRC at an early stage of tumorigenesis. A small molecular approach degrading both β-catenin and Ras via inhibition of the Wnt/β-catenin signaling would be an ideal strategy for treatment of mCRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.